Efficient Multigrid based solvers for Isogeometric Analysis

R. Tielen, M. Möller and C. Vuik

Delft Institute of Applied Mathematics (DIAM) Numerical Analysis

May 31, 2018

Isogeometric Analysis (IgA)

- Extension of the Finite Element Method (FEM)
- Same basis functions (**B-Splines**) are used for approximate geometry Ω_h and solution u_h
- ullet Global mapping from Ω_h to parametric domain $\hat{\Omega}_h$
- Description of the geometry that is highly accurate $(\Omega = \Omega_h)$ throughout all computation steps

Figure: Poisson problem solved by FEM (left) and IgA (right).

Construction of B-spline basis functions

A *knot vector* is a sequence of non-decreasing points $\xi_i \in \mathbb{R}$ with the following structure:

$$\Xi = (\xi_1, \xi_2, \dots, \xi_i, \dots, \xi_{n+p}, \xi_{n+p+1})$$

where

- *n* is the number of B-spline basis functions
- p is the degree of the basis functions

 Ξ is called *open* and *uniform* if:

- The first and last knots are repeated p + 1 times
- All $\xi_{p+1}, \dots, \xi_{n+1}$ are equally spaced

Construction of B-spline basis functions

Cox-de Boor recursion formula

$$\phi_{i,0}(\xi) = \begin{cases} 1 & \text{if } \xi_i \leq \xi < \xi_{i+1} \\ 0 & \text{otherwise.} \end{cases}$$

$$\phi_{i,p}(\xi) = \frac{\xi - \xi_i}{\xi_{i+p} - \xi_i} \phi_{i,p-1}(\xi) + \frac{\xi_{i+p+1} - \xi}{\xi_{i+p+1} - \xi_{i+1}} \phi_{i+1,p-1}(\xi)$$

for $p \ge 1$, where $\xi \in [\xi_1, \xi_{n+p+1}]$.

Workshopday 2018 May 31, 2018

Examples of B-spline basis functions (p = 0)

basis functions for $\Xi = \{0, 1, 2, 3\}$

Workshopday 2018 May 31, 2018

Examples of B-spline basis functions (p = 0)

May 31, 2018

Workshopday 2018

Examples of B-spline basis functions (p = 0)

Examples of B-spline basis functions (p = 1)

Linear basis functions for $\Xi = \{0, 0, 1, 2, 3, 3\}$

Workshopday 2018

Examples of B-spline basis functions (p = 2)

Quadratic basis functions for $\Xi = \{0, 0, 0, 1, 2, 3, 3, 3\}$

Properties of B-spline basis functions

- Compact support ⇒ Sparse system matrices
- Strictly positive ⇒ Mass matrix positive
- ullet Partition of unity \Rightarrow Direct mass lumping

B-spline basis functions in 2D

Extension 2D

Tensor product of the 1D B-spline basis functions

Need for efficient solvers

Workshopday 2018 May 31, 2018

Observation

The linear system $\mathbf{A}_{h,p}\mathbf{x}_{h,p}=\mathbf{b}_{h,p}$

- reduces to standard FEM for p = 1;
- becomes more difficult to solve for increasing p.

Efficient solvers for high-order B-spline-based discretizations are needed

Solution strategy

Use the error of low-order discretizations to update the solution of high-order discretizations \Rightarrow **p-multigrid**

p-multigrid

- Hierarchy of discretizations with different orders *k*
- Low-order error is used to update high-order solution
- Smoothing steps are applied at each k-level (•)

Prolongation/Restriction

Restrict residual \mathbf{r}_k from level k to level k-1:

$$I_k^{k-1} := (\mathbf{M}_{k-1}^{k-1})^{-1} \mathbf{M}_k^{k-1}$$

Prolongate error \mathbf{e}_{k-1} from level k-1 to level k:

$$I_{k-1}^k := (\mathbf{M}_k^k)^{-1} \mathbf{M}_{k-1}^k$$

Where:

- $(\mathbf{M}_k^l)_{(i,j)} := \int_{\hat{\Omega}_h} \phi_i^k(\xi) \; \phi_j^l(\xi) \; c(\xi) \; \mathrm{d}\hat{\Omega}$
- \mathbf{M}_{k}^{k} is in practice replaced by its lumped counterpart

V-cycle p-multigrid

Solution procedure

- Start with initial guess $\mathbf{u}_{h,p}^{(0)}$
- Obtain correction $\tilde{\mathbf{e}}_{h,p}^{(n)}$ with single V-cycle
- Solution update:

$$\mathbf{u}_{h,p}^{(n+1)} \leftarrow \mathbf{u}_{h,p}^{(n)} + \tilde{\mathbf{e}}_{h,p}^{(n)}$$

• Stopping criterion:

$$\frac{||\mathbf{r}_{h,p}^{(n)}||}{||\mathbf{r}_{h,p}^{(0)}||} < \epsilon$$

Numerical Results

Consider

$$\begin{array}{rcl} -\Delta u & = & f & \text{ on } \Omega \\ u & = & u_{exact} \text{ on } \partial \Omega \end{array}$$

where

$$u_{\text{exact}}(x,y) = -(x^2 + y^2 - 1)(x^2 + y^2 - 4)xy^2$$

p-multigrid as a solver

- SOR $(au=rac{4}{3})$ for pre/post-smoothing (
 u=4)
- Conjugate Gradient at level k=1 ($\epsilon=10^{-4}$)

p-multigrid as a solver

- SOR $(\tau = \frac{4}{3})$ for pre/post-smoothing
- Conjugate Gradient at level k=1 ($\epsilon=10^{-4}$)

p-multigrid as a solver

Optimal spatial convergence $\mathcal{O}(h^{p+1})$

Workshopday 2018 May 31, 2018

p-multigrid as a preconditioner

- Conjugate Gradient as outer solver ($\epsilon=10^{-8}$)
- 1 V-cycle as preconditioner in every iteration

Observations

Numerical results indicate:

- Number of V-cycles/iterations is relatively low ✓
- Number of V-cycles/iterations is h-independent ✓
- Optimal $\mathcal{O}(h^{p+1})$ spatial convergence is achieved \checkmark
- Number of V-cycles/iterations is p-dependent X

Spectral analysis

Error reduction factors:

$$r^{\mathcal{S}}(\mathbf{v}) = \frac{|\mathcal{S}(\mathbf{v})|}{|\mathbf{v}|}$$
 $r^{CGC}(\mathbf{v}) = \frac{|CGC(\mathbf{v})|}{|\mathbf{v}|}$

where $S(\cdot)$ and $CGC(\cdot)$ denote a smoothing step and coarse grid correction applied on \mathbf{v} , respectively.

Here (v_i) are the generalized eigenvectors which satisfy:

$$\mathbf{A}_{h,p}\mathbf{v}_i = \lambda_i \mathbf{M}^{\mathbf{C}}_{h,p}\mathbf{v}_i, \quad i = 1,\dots, N_{dof}$$

Spectral analysis

Figure: Reduction factors (\mathbf{v}_i) for p=2 (left) and p=3 (right).

Forthcoming Work

- Obtain p-independence by alternative smoothers (*)
- Explore flexibility of coarsening in both h and p
 - N_{dof} at 'coarsest' level is relatively high

(*) C. Hofreither and S. Takacs. *Robust Multigrid for IgA Based on Stable Splittings of Spline Spaces* SIAM Journal on Numerical Analysis, 55(4): 2004-2024, 2017

