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Combustion is (almost) everywhere ...
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Furnaces

Fires

Transport



First full engine computation with large-eddy simulation
PRACE allocation FULLEST – DGEN380
360° simulation with the AVBP code (Pérez Arroyo et al.)
These results benefitted of funding or developments from projects ATOM (DGAC/SafranTech No 
2018-39), EXCELLERAT (H2020 823691) and EPEEC (H2020 801051)

Why study Turbulent Combustion?
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Advanced CFD and Massively parallel computer architectures offer a clear potential 
for time and cost reductions of the design process by providing accurate predictions

spray
emissions

kinetics

complex
geometry

turb/chem

Practical combustion systems

acoustics/comb



What is a flame?
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A flame is the combination of thermochemical
processes and transport (mixing)

flame
zone

Reactants Products
+

Heat release

Flow model: - variable density
- multi-species
- chemical source terms



What is turbulence?
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Reynolds number UL / n



What are the equations?
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Navier-Stokes equations:

Species conservation equations

Energy equation

4 + Nspec conservation equations

• steady / unsteady
• compressible / low-mach 

• thermodynamic and transport
properties

• chemical kinetics



What are the equations?
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Navier-Stokes equations:

Production / destruction terms of turbulence:
• Non-linear
• Large frequency spectrum

v

Wave 
number k

Energy 
E(k)

MODELLING !



What are the equations?
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Navier-Stokes equations:

Species conservation equations

Energy equation

Combustion terms

• steady / unsteady
• compressible / low-mach 

• thermodynamic and transport
properties

• chemical kinetics



The Arrhenius law
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The progress rate of the jth reaction  is given by:
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The essential problem of chemists is to provide these two rates.  They usually 
rely on the Arrhenius law: and equilibrium constants:
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Entropy and enthalpy changes of jth
reaction (from the thermodynamics table)
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Non-linear turbulent transport
+

Non-linear chemistry

Complex chemistry / turbulence interaction

MODELLING !



Numerical Strategies to solve turbulence
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Wave 
number k

Energy  E(k)

Kolmogorov h
Reh=1

Integral scale L 

Cutting scale kc

RANS model

DNS resolved N ≈ Re9/4 

Re3/4



Numerical Strategies to solve turbulence : 
Large Eddy Simulation
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Wave 
number k

Energy  
E(k)

Production DissipationInertial range

Kolmogorov h
Reh=1

Taylor 
microscale l

Integral scale L 

LES resolved

Cutting scale kc

Subgrid model



Modeling turbulence in LES
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The filtered equation

ν t = (CsΔ)2 2 !Sij !Sij = (CsΔ)2 S

– Smagorinsky model 
– Germano dynamic model
– WALE model 
– Structural models
– …and others
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Modeling combustion in LES
The filtered source term

LESDNS

Two major approaches

• PDF-based

• Thickened flame
Resolved flame structure

Loss of subgrid-scale wrinkling à longer flame

Given flame structure
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A word about chemistry
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Stoichiometric relationships for an arbitrarily complex set
of m reactions involving n species, may be written:
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Reduced chemical schemes
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• Detailed schemes (GRImech~500 reactions) are produced from very 
large size schemes developed by chemists and are able to accurately 
describe oxidation of most hydrocarbons

• A first reduction step leads to skeletal mechanisms (~50-100 
reactions) that keep most of the performances of detailed schemes

• A second reduction step (QSS) leads to analytical schemes (~10-30 
reactions) having reduced but still reasonable performances

• Finally, optimally fitted global or semi-global schemes (1 to 4 steps) 
often require on-line adjustment of constants with P, F, etc

Ac
cu

ra
cy

CP
U 

co
st

In addition, complex fuels are simplified 
and described with surrogate fuels



CLEAN AIR 2017
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AVBP – An unstructured LES solver

§ External, internal flows
§ Fully compressible turbulent reacting flows (ideal & real gas 

thermo.)
§ DNS / LES approach

§ Unstructured hexaedral, tetraedral, prisms & hybrid meshes
§ Massively parallel, SPMD approach
§ Explicit in time 
§ Centered schemes

Finite Volumes / Finite Elements (2nd/3rd ordera)

§ SGS  models : Smagorinsky(dynamic)/WALEb

§ NSCBCc boundary cond. + wall laws
§ Reducedd or tabulatede chemical kinetics 
§ Thickened flame turb. combustion model (TFLES)f

§ Multi-phase solvers (Lagrangian & Eulerian)

u Gas turbines
u Aeronautical engines
u Piston engines
u Statoreactor
u Rocket engines
u Furnaces
u Heat exchangers

Applications

aColin 2000  bNicoud 1999  cPoinsot 1992
dFranzelli 2010 eFiorina 2010 fColin 2000

developed by CERFACS
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Ignition of the MICCA burner of EM2C

MICCA (EM2C) (Durox et al)

• Annular chamber
• 16 swirled injectors
• propane
• transparent walls

Quartz tubes!

Plenum!

Swirl injector!

Plenum supply  
channel!

L = 400 mm!

H = 200 mm!

l = 300 mm!

6.5!

10!
C3H8/Air!
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Ignition of the MICCA burner of EM2C

Philip et al, ASME 2013
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Adding two-phase flow : liquid fuel

CHAMBER

Exit

Swirler

Air inlet

Fuel
Injection

150
m

m

.
90 mm

Injection
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Experiment of Cambridge university
Iso-contoursof liquid volume fraction



Other numerical approaches
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High order methods
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For a given precision, high order methods are 
computationally efficient

Low order

High order



Assumptions: 
§ Unknowns are represented locally (inside a cell) as a polynomial of 

degree p
§ No continuity is assumed at the interface between two adjacent cells
§ Compute an interface flux polynomial using (approximated)

Riemann solvers as in Finite Volume Method

Several techniques:
§ Solve the weak form of the equation locally 

ó Discontinuous Galerkin method
§ Solve the strong form of the equation locally 

ó Spectral Difference method 
One high-order 2D cell
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Spectral discontinuous approach



Promising techniques for LES and DNS

§ Accuracy: control by the polynomial degree p chosen by the user
§ Local treatment: 

• Algorithm can easily be written in term of matrix/vector product ó
Good vectorization

• Very compact stencil óHigh Parallel Efficiency

§ Compatible with Unstructured grids

hp-adaptation

§ Change local refinement (size h of the cell)
§ Change solution accuracy (degree p of the polynomial 

representation)
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Spectral discontinuous approach



Example : jet noise simulation
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Spectral discontinuous approach



Lattice Boltzman Method (LBM)
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Can we avoid meshing complex geometries ? 

Boivin et al. , M2P2



Lattice Boltzman Method (LBM)
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Can we avoid meshing complex geometries ? 

Boivin et al. , M2P2



Lattice Boltzman Method (LBM)
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Can we avoid meshing complex geometries ? 

Finite 
differences

Boivin et al. , M2P2



Lattice Boltzman Method (LBM)
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VOLVO case
Sjunnesson et al., 1991

Boivin et al. , M2P2



High Performance Computing
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High Performance Computing
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Parallel performance

�X

• Scaling: Strong i.e faster result (left) and weak i.e finer 
mesh (right) 

Strong scaling at TGCC
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Scaling on GPUs
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Scaling on GPUs

�X

• Excellent strong scaling performance 
• Additional cache optimisations accelerate the 

simulations  Influence of the Cell group size 
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Mesh adaptation
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Optimisating the simulations: Mesh adaptation

�X

• Adaptation using Grad C/C



Conclusion

33

Key ingredients for accurate and reliable numerical simulation of 
turbulent combustion:

• High-quality, adapted mesh
• High order integration schemes
• Parallel efficiency

Visit www.cerfacs.fr

http://www.cerfacs.fr/

