

EUROPEAN CENTRE FOR RESEARCH AND ADVANCED TRAINING IN SCIENTIFIC COMPUTING

Numerical Simulation of Turbulent Combustion

B.Cuenot & the CFD Team

www.cerfacs.fr

Combustion is (almost) everywhere ...

Why study Turbulent Combustion?

Practical combustion systems

complex geometry

Advanced CFD and Massively parallel computer architectures offer a clear potential for time and cost reductions of the design process by providing accurate predictions

What is a flame?

A flame is the combination of <u>thermochemical</u> <u>processes</u> and <u>transport (mixing)</u>

Flow model:

- variable density
- multi-species
- chemical source terms

What is turbulence?

Reynolds number UL / ν

What are the equations?

Navier-Stokes equations:

$$\frac{\partial(\rho u_i)}{\partial t} + \frac{\partial(\rho u_i u_j)}{\partial x_j} = -\frac{\partial P}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j} \qquad \begin{array}{c} \bullet \quad \text{steady / unsteady} \\ \bullet \quad \text{compressible / low-mach} \end{array}$$

Species conservation equations

$$\frac{\partial(\rho Y_k)}{\partial t} + \frac{\partial(\rho(u_i + V_{k,i})Y_k)}{\partial x_i} = \dot{\omega}_k$$

- thermodynamic and transport properties
- chemical kinetics

Energy equation

$$\rho \frac{DE}{Dt} = -\frac{\partial q_i}{\partial x_i} + \frac{\partial}{\partial x_j} (\tau_{ij} u_i) - \frac{\partial}{\partial x_i} (Pu_i) + \dot{\omega}_T + \dot{\Omega}$$

4 + Nspec conservation equations

What are the equations?

Navier-Stokes equations:

$$\frac{\partial(\rho u_i)}{\partial t} + \frac{\partial(\rho u_i u_j)}{\partial x_j} = -\frac{\partial P}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j}$$

Production / destruction terms of turbulence:

- Non-linear
- Large frequency spectrum

MODELLING!

What are the equations?

Navier-Stokes equations:

$$\frac{\partial(\rho u_i)}{\partial t} + \frac{\partial(\rho u_i u_j)}{\partial x_j} = -\frac{\partial P}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j} \qquad \begin{array}{c} \bullet \quad \text{steady / unsteady} \\ \bullet \quad \text{compressible / low-mach} \end{array}$$

Species conservation equations

$$\frac{\partial(\rho Y_k)}{\partial t} + \frac{\partial(\rho(u_i + V_{k,i})Y_k)}{\partial x_i} = \dot{\omega}_k$$

- thermodynamic and transport properties
- chemical kinetics

Energy equation

$$\rho \frac{DE}{Dt} = -\frac{\partial q_i}{\partial x_i} + \frac{\partial}{\partial x_j} (\tau_{ij} u_i) - \frac{\partial}{\partial x_i} (Pu_i) + \dot{\omega}_T + \dot{\Omega}$$

Combustion terms

The Arrhenius law

The progress rate of the j^{th} reaction is given by:

$$Q_{j} = K_{j}^{f} \prod_{k=1}^{n} \left[\frac{\rho Y_{k}}{W_{k}} \right]^{\nu_{kj}} - K_{j}^{b} \prod_{k=1}^{n} \left[\frac{\rho Y_{k}}{W_{k}} \right]^{\nu_{kj}}$$
Forward rate of reaction

The essential problem of chemists is to provide these two rates. They usually rely on the <u>Arrhenius law</u>: and <u>equilibrium constants</u>:

$$K_{j}^{f} = A_{j}^{f} T^{\beta_{j}} \exp(-E_{j}/RT)$$
Collision frequency: Activation energy

 $K_{j} = \frac{1}{\left(P_{a}/RT\right)\sum_{k=1}^{n}\left(v_{kj}-v_{kj}\right)} \exp\left(\frac{\Delta S_{j}^{0}}{R} - \frac{\Delta S_{j}^{0}}{R}\right)$

Entropy and enthalpy changes of *j*th reaction (from the thermodynamics table)

- Temp. modulation

The Arrhenius law

The progress rate of the j^{th} reaction is given by:

Collision frequency:

- Pre-exponential Cst
- Temp. modulation

Entropy and enthalpy changes of jth reaction (from the thermodynamics table)

Numerical Strategies to solve turbulence

Numerical Strategies to solve turbulence : Large Eddy Simulation

Modeling turbulence in LES The **filtered** equation

$$\frac{\partial \overline{\rho} \widetilde{u}_i}{\partial t} + \frac{\partial}{\partial x_i} (\overline{\rho} \widetilde{u}_i \widetilde{u}_j) + \frac{\partial \overline{p}}{\partial x_j} = \frac{\partial}{\partial x_i} \left[\overline{\tau}_{ij} - \overline{\rho} \left(\widetilde{u_i u_j} - \widetilde{u}_i \widetilde{u}_j \right) \right]$$

$$\mathcal{T}_{ij} = \widetilde{u_i u_j} - \widetilde{u}_i \widetilde{u}_j = \frac{\delta_{ij}}{3} \, \mathcal{T}_{kk} - 2 \left[\nu_t \left(\widetilde{S}_{ij} - \frac{\delta_{ij}}{3} \, \widetilde{S}_{kk} \right) \right]$$

$$v_t = (C_s \Delta)^2 \sqrt{2\tilde{S}_{ij}\tilde{S}_{ij}}$$
 – Germano dyr

- Smagorinsky model
- Germano dynamic model
- Structural models
- ...and others

Modeling combustion in LES

The **filtered** source term

DNS LES

Two major approaches

PDF-based

$$\widetilde{\Phi} = \int_{c*}^{\cdot} \int_{Z*}^{\cdot} \Phi(c^*, Z^*) P(c^*) P(Z^*) dc^* dZ^*$$

$$\uparrow$$
Given flame structure

Thickened flame

Resolved flame structure

Loss of subgrid-scale wrinkling → longer flame

A word about chemistry

Stoichiometric relationships for an <u>arbitrarily</u> complex set of *m* reactions involving *n* species, may be written:

Nb	Reaction
1	$H_2 + O_2 \rightleftharpoons 2OH$
2	$OH + H_2 \rightleftharpoons H_2O + H$
3	$H + O_2 \rightleftharpoons OH + O$
4	$O + H_2 \rightleftharpoons OH + H$
5a	$H + O_2 + M \rightleftharpoons HO_2 + M$
6	$H + O_2 + O_2 \rightleftharpoons HO_2 + O_2$
7	$H + O_2 + O_2 \rightleftharpoons HO_2 + O_2$
8	$OH + HO_2 \rightleftharpoons H_2O + O_2$
9	$H + HO_2 \rightleftharpoons 2OH$
10	$O + HO_2 \rightleftharpoons O_2 + OH$
11	$2OH \rightleftharpoons O + H_2O$
12^{b}	$H_2 + M \rightleftharpoons H + H + M$
13	$O_2 + M \rightleftharpoons O + O + M$
14 ^c	$H + OH + M \rightleftharpoons H_2O + M$
15	$H + HO_2 \rightleftharpoons H_2 + O_2$
16	$HO_2 + HO_2 \rightleftharpoons H_2O_2 + O_2$
17	$H_2O_2 + M \rightleftharpoons OH + OH + M$
18	$H_2O_2 + H \rightleftharpoons HO_2 + H$
19	$H_2O_2 + OH \rightleftharpoons H_2O + HO_2$

CPU cost

Reduced chemical schemes

- Detailed schemes (GRImech~500 reactions) are produced from very large size schemes developed by chemists and are able to accurately describe oxidation of most hydrocarbons
- A first reduction step leads to skeletal mechanisms (~50-100 reactions) that keep most of the performances of detailed schemes
- A second reduction step (QSS) leads to analytical schemes (~10-30 reactions) having reduced but still reasonable performances
- Finally, optimally fitted global or semi-global schemes (1 to 4 steps) often require on-line adjustment of constants with P, Φ , etc

In addition, complex fuels are simplified and described with surrogate fuels

	Surrogate 1		Surrogate 2	
Component	mole [%]	vol. [%]	mole [%]	vol. [%]
n-heptane	22.0	23.5	66.8	74.1
iso-octane	44.8	53.6	0.4	0.5
benzene	13.0	10.0	24.8	20.0
toluene	20.2	12.9	7.9	5.3
Avg. formula	C _{7.32} H _{14.0}		$C_{6.75}H_{12.9}$	

Accuracy

AVBP – An unstructured LES solver

developed by CERFACS

- External, internal flows
- Fully compressible turbulent reacting flows (ideal & real gas thermo.)
- DNS / LES approach

- Massively parallel, SPMD approach
- Explicit in time
- Centered schemes
 Finite Volumes / Finite Elements (2nd/3rd order^a)
- SGS models : Smagorinsky(dynamic)/WALE^b
- NSCBC^c boundary cond. + wall laws
- Reduced^d or tabulated^e chemical kinetics
- Thickened flame turb. combustion model (TFLES)
- Multi-phase solvers (Lagrangian & Eulerian)

Applications

- Gas turbines
- Aeronautical engines
- Piston engines
- Statoreactor
- Rocket engines
- Furnaces
- Heat exchangers

Ignition of the MICCA burner of EM2C

MICCA (EM2C) (Durox et al)

- Annular chamber
- 16 swirled injectors
- propane
- transparent walls

Ignition of the MICCA burner of EM2C

Philip et al, ASME 2013

Adding two-phase flow: liquid fuel

Experiment of Cambridge university

Air inlet

Other numerical approaches

High order methods

For a given precision, high order methods are computationally efficient

Spectral discontinuous approach

Assumptions:

- Unknowns are represented <u>locally</u> (inside a cell) as a <u>polynomial of</u> degree p
- No continuity is assumed at the interface between two adjacent cells
- Compute an interface flux polynomial using (approximated)
 Riemann solvers as in Finite Volume Method

Several techniques:

- Solve the weak form of the equation locally
 - ⇔ Discontinuous Galerkin method
- Solve the strong form of the equation locally
 - **⇔** Spectral Difference method

One high-order 2D cell

Spectral discontinuous approach

Promising techniques for LES and DNS

- Accuracy: control by the polynomial degree p chosen by the user
- Local treatment:
 - Algorithm can easily be written in term of matrix/vector product ⇔
 Good vectorization
 - Very compact stencil ⇔ High Parallel Efficiency
- Compatible with Unstructured grids

hp-adaptation

- Change local refinement (size h of the cell)
- Change solution accuracy (degree p of the polynomial representation)

Spectral discontinuous approach

Example: jet noise simulation

Can we avoid meshing complex geometries?

Boivin et al., M2P2

Lattice Boltzmann equation
$$-\frac{1}{\tau}(f-f^0)$$

$$\frac{\partial f}{\partial t} + \xi_\beta \frac{\partial f}{\partial x_\beta} + F_\beta \frac{\partial f}{\partial \xi_\beta} = \Omega(f)$$
 BGK

Maxwell-Boltzmann distribution function

$$f^{(0)} = \frac{\rho}{(2\pi c_T^2)^{D/2}} \exp\left(\frac{-(\vec{\xi} - \vec{u})^2}{2c_T^2}\right)$$

Continuum-statistical variables

$$\rho(x,t) \equiv mn(x,t) = m \int f dv$$

$$\rho u(x,t) = m \int f v dv$$

$$\rho e(x,t) = \frac{1}{2} m \int f |\underbrace{v-u}| dv$$

Can we avoid meshing complex geometries?

Lattice Boltzmann equation

$$f_i(\boldsymbol{x} + \boldsymbol{c}\delta t, t + \delta t) - f_i(\boldsymbol{x}, t) = -\frac{1}{\tau} [f_i(\boldsymbol{x}, t) - f_i^{eq}(\boldsymbol{x}, t)]$$

Streaming

Collision

Maxwell-Boltzmann distribution function

$$f_i^{eq} = \rho w_i \left[1 + \frac{\boldsymbol{c}_i \cdot \boldsymbol{u}}{c_s^2} + \frac{(\boldsymbol{c}_i \cdot \boldsymbol{u})^2}{2c_s^4} - \frac{\boldsymbol{u}^2}{2c_s^2} \right]$$

Boivin et al., M2P2

Can we avoid meshing complex geometries?

$$\frac{\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0}{\frac{\partial \rho \boldsymbol{u}}{\partial t} + \nabla \cdot (\rho \boldsymbol{u} \boldsymbol{u}) = -\nabla p + \nabla \cdot \left[\rho \nu (\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T)\right]}$$

$$\frac{\partial T}{\partial t} + u_{\alpha} \frac{\partial}{\partial x_{\alpha}} T = \frac{1}{\rho} \frac{\partial}{\partial x_{\alpha}} (\rho D_{T} \frac{\partial T}{\partial x_{\alpha}}) + \frac{\omega_{h}}{\rho c_{p}}$$

$$+$$

$$\frac{\partial Y_k}{\partial t} + u_\alpha \frac{\partial}{\partial x_\alpha} Y_k = \frac{1}{\rho} \frac{\partial}{\partial x_\alpha} (\rho D_k \frac{\partial Y_k}{\partial x_\alpha}) + \frac{\omega_k}{\rho}$$

Boivin et al., M2P2

Finite differences

VOLVO case *Sjunnesson et al., 1991*

50

Contraction of the second

Heat Release Rate

Boivin et al., M2P2

High Performance Computing

High Performance Computing

 Scaling: Strong i.e faster result (left) and weak i.e finer mesh (right)

CERFACS

Scaling on GPUs

- Excellent strong scaling performance
- Additional cache optimisations accelerate the simulations
 Influence of the Cell group size

Mesh adaptation

Adaptation using Grad C/C

Conclusion

Key ingredients for accurate and reliable numerical simulation of turbulent combustion:

- High-quality, adapted mesh
- High order integration schemes
- Parallel efficiency

LENTRE EUROPÉEN DE RECHERCHE ET DE FORMATION AVANCÉE EN CALCUL SCIENTIFIQUES

A PROPOS
AXES DE RECHERCHE
DEFIS SCIENTIFIQUES
CODES DE CALCUL
FORMATION

Q

TRAVAILLER AU CERFACS

EN SAVOIR PLUS

Visit www.cerfacs.fr

