
Automatic Generation of 

Networks for Emissions 

Simulation

Rishikesh Sampat

PhD Candidate, Faculty of Aerospace Engg

©2020 TU Delft

The information in this document is the property of TU Delft and may not 

be copied or communicated to a third party without prior written consent 15/10/2020



Combustion in Aviation

• Gas turbine engines for 

propulsion

• Energy conversion by 

combustion of fuel to produce 

thrust.

• Advisory Council for Aviation 

Research and Innovation in 

Europe (ACARE) regulations on 

CO2, CO, NOx emissions[1].
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Combustion Modelling

• Computational Fluid Dynamics(CFD): Turbulence modelling+ 

Chemistry modelling

• Most often: reduced chemistry model

• Emissions such as CO and NOx dependent on intermediate 

species and radical concentrations and are typically slower than 

reactions responsible for heat release. 

- Hence detailed chemical mechanism required.

• Too expensive to include in CFD
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Combustion Chemistry

• Non-linear

• Stiffness
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Non-linearity

• For reaction : 𝑚𝐴 + 𝑛𝐵 → 𝑝𝐶 + 𝑞𝐷

- −
1

𝑚

𝑑 𝐴

𝑑𝑡
= 𝑘[𝐴]𝑚[𝐵]𝑛

- Where, 𝑘 = K𝑒−
𝐸𝑎
𝑅𝑇
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• Power Law

• Exponential dependence on temperature
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Stiffness

Large 

Difference



CFD-CRN

• Decouple fluid mechanics and chemistry calculation

- Step1: CFD with minimal chemistry to account for heat release.

- Step2: Chemical Reactor Network to account for detailed 

chemistry.

• Assumption: Minor species, do not contribute much to energy 

release and hence have a small influence on the flow field.
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Chemical Reactor Network

• PSR(Perfectly stirred reactor):

- 0D ideal reactor model

- homogeneously mixed 

• Network of PSRs

• CRN: Mass, Species and 

Energy equations

• 0D leads to a system of ODEs 
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Fig: PSR representation

Fig: CRN representation



Chemical Reactor Network

• 𝑔 𝜔 = 𝑚
𝑑𝜔

𝑑𝑡
= σ𝑖𝑛 ሶ𝑚𝑖𝑛 𝜔𝑖𝑛 −𝜔 + 𝑉 ሶ𝜔(𝑀𝑊)

• Equation for 1 species in 1 reactor

• System of equations of NS species and NR reactors.

• Solve for steady state: 𝑔 𝜔 =0 
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AGNES

• Software tool developed in Python to implement CFD-CRN 

process.

• Automatically generate CRN from CFD solution without explicit 

partitioning

• Cantera[4] used for chemistry bookkeeping

• Clustering->Solver
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Clustering

• Reducing 1e^6 CFD cells to 1e^3 reactors.

• Each reactor deals with ~(53-100) chemical species.

• Clustering done based on user defined criteria: Eg -

Temperature, Mass fraction of O2, Mass fraction of CH4
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Fig: BFS algorithm

• Breadth First Search method

− Traverse through children at 

same level first

− Ensures that clustered cells 

are similar and physically 

connected



Clustering
• Mass flow exchange between reactors based on CFD result.

• Initial thermodynamic and chemical state of reactors based on 

weighted average of agglomerated cells.

• Mass Balance recalculated based on ratio of mass flow exchanged 

with neighbouring reactor and total inflow into a reactor. 

- CFD solution will have some convergence tolerance and this 

adds up during clustering.
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Solver

• Local Solver: solve individual reactors while considering the rest 

constant. Subsequent iterations over all reactors.

- Cantera’s Reactor Network solver used.

• Global Solver:

- Larger system of equations ~ NS x NR

- Newton Solver: fast gradient based stepping towards steady 

state solution

- Pseudo Time-stepping: BDF, for when Newton’s method 

diverges.
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AGNES flowchart
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Test Case
Fuel: Methane(CH4) @ 300K

Oxidizer: Air @ 673K

[5] A. S. Veríssimo, A. M. A. Rocha, and M. Costa, Operational, Combustion, and Emission Characteristics of a Small-Scale 

Combustor, Energy Fuels 2011, 25, 2469–2480

Fig: Schematic of Combustor

Fig: Appearance of combustion modes
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CFD in ANSYS Fluent™

AGNES processing

AGNES

Detailed Chemical 

Mechanism: GRI-Mech 3.0

53 species, 325 reactions CRN



Comparison to CFD
• CFD: FGM+NOx post processing

• CRN: GRI Mech 3.0



NOx formation mechanisms

• Thermal pathway

- 𝑁2 + 𝑂 ⇌ 𝑁𝑂 + 𝑁

• Prompt pathway

- 𝐶𝐻 + 𝑁2 ⇌ 𝐻𝐶𝑁 + 𝑁

• NNH pathway

- 𝑁2 + 𝐻 ⇌ 𝑁𝑁𝐻

• Reburn pathway

- 𝐶𝐻 + 𝑁𝑂 ⇌ 𝐻𝐶𝑁 + 𝑂
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Location in Combustor
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NOx pathways
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a ( ∼=0.91), b ( ∼=0.77), and e ( ∼=0.53)

[6] A AV Perpignan, R Sampat, A Gangoli Rao, Modelling pollutant emissions of Flameless Combustion with a joint CFD and Chemical 

Reactor Network approach, Frontiers in Mechanical Engineering 5, 63 November 2019, https://doi.org/10.3389/fmech.2019.00063

• NOx formed in a 

section along the 

length of the 

combustor.

• Prompt and NNH 

pathways have a 

large contribution.

• Possible due to large 

number of reactors 

distributed in the 

domain based on 

physical phenomenon 

captured in CFD

https://doi.org/10.3389/fmech.2019.00063


Conclusion

• AGNES: Tool for CFD-CRN developed

• Application on a Combustor

• NOx and CO predictions closer to experiments than that from CFD

• Implementation of detailed Chemical Kinetic Mechanism enabled 

NOx formation pathway analysis which shows 

- location of formation

- predominance of Prompt and NNH pathways.
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Thank You
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