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Combustion in Aviation

« (Gas turbine engines for
propulsion

« Energy conversion by
combustion of fuel to produce
thrust.

Source: https://blog.klm.com/as-fit-as-a-jet-engine/

» Advisory Council for Aviation
Research and Innovation in
Europe (ACARE) regulations on
CO2, CO, NOx emissions[1].

1] Flight Path 2050 and ACARE Goals for Maintaining and Extending Industrial Leadership in Aviation: A Map of the Aviation
Technology Space, Sustainability 2019, 11, 2065; doi:10.3390/su11072065
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Combustion Modelling

« Computational Fluid Dynamics(CFD): Turbulence modelling+
Chemistry modelling

» Most often: reduced chemistry model

« Emissions such as CO and NOx dependent on intermediate
species and radical concentrations and are typically slower than
reactions responsible for heat release.

- Hence detailed chemical mechanism required.

» Too expensive to include in CFD



Combustion Chemistry

* Non-linear

e Stiffness
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Non-linearity

For reaction : mA +nB — pC + qD

Where, k =

* Power Law

» Exponential dependence on temperature



Stiffness
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CFD-CRN

« Decouple fluid mechanics and chemistry calculation

- Stepl: CFD with minimal chemistry to account for heat release.

- Step2: Chemical Reactor Network to account for detailed
chemistry.

« Assumption: Minor species, do not contribute much to energy
release and hence have a small influence on the flow field.

[2] Stagni et al, Computer and Chemical Engineering 60(2014) 197-212
[3] M. Falcitelli, L. Tognotti, and S. Pasini, An algorithm for extracting chemical reactor network models from cfd
simulation of industrial combustion systems, Combustion Science and Technology 174, 27 (2002).
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Chemical Reactor Network

 PSR(Perfectly stirred reactor):

- 0D ideal reactor model

- homogeneously mixed

 Network of PSRs

« CRN: Mass, Species and
Energy equations

0D leads to a system of ODEs

Thermal losses Mixer

QOutlet

Mass flow m m
Mass fraction Y, —> S ‘ —_— Y
Enthalpy H, . . o ° H
4 Yi o
Residence time T *'H .,

Particles are perfectly mixed until the

molecular scales

Fig: PSR representation
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Chemical Reactor Network

d . .
g(w) = md_(;:) = YinMin(Win — @) + Vo (MW)
Equation for 1 species in 1 reactor

System of equations of Ng species and N reactors.

Solve for steady state: g(w) =0
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AGNES

Software tool developed in Python to implement CFD-CRN
process.

« Automatically generate CRN from CFD solution without explicit
partitioning

« Canteral4] used for chemistry bookkeeping

* Clustering->Solver

[4] David G. Goodwin, Raymond L. Speth, Harry K. Moffat, and Bryan W. Weber. Cantera: An object-oriented software toolkit for
chemical kinetics, thermodynamics, and transport processes. https://www.cantera.org, 2018. Version
2.4.0. doi:10.5281/zenodo0.1174508
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https://www.cantera.org/
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Clustering

* Reducing 1e”6 CFD cells to 1e”3 reactors.
« Each reactor deals with ~(53-100) chemical species.

* Clustering done based on user defined criteria: Eg -
Temperature, Mass fraction of O,, Mass fraction of CH,

Breadth First Search method }\
— Traverse through children at 5 3

same level first

— Ensures that clustered cells
are similar and physically 4
connected

Fig: BFS algorithm
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Clustering

Mass flow exchange between reactors based on CFD result.

« Initial thermodynamic and chemical state of reactors based on
weighted average of agglomerated cells.

« Mass Balance recalculated based on ratio of mass flow exchanged
with neighbouring reactor and total inflow into a reactor.

- CFD solution will have some convergence tolerance and this
adds up during clustering.
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Solver

» Local Solver: solve individual reactors while considering the rest
constant. Subsequent iterations over all reactors.

- Cantera’s Reactor Network solver used.

 Global Solver:

- Larger system of equations ~ Ng X Ny

- Newton Solver: fast gradient based stepping towards steady
state solution

- Pseudo Time-stepping: BDF, for when Newton’s method
diverges.
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AGNES flowchart

CFD Simulation

I

Clustering of
cells by BFS

4

> Cantera Local solver

Low residuals?

Il Yes

Global solver:
1) Newton’s method

2) Cantera for chemistry book-keeping

@

No

Low residuals?

Yes)[ Stop J
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Test Case
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Fig: Schematic of Combustor

[5] A. S. Verissimo, A. M. A. Rocha, and M. Costa, Operational, Combustion, and Emission Characteristics of a Small-Scale
TU Del.l:t Combustor, Energy Fuels 2011, 25, 2469-2480




AGNES processing

Wall Cone
Qutlet

4

Wall

Wall Inlet

CFD in ANSYS Fluent™

Fuel Inlets : ,’ "
Air Inlt \
4 )
AGNES
\_

Detailed Chemical
Mechanism: GRI-Mech 3.0 | . i e
53 species, 325 reactions CRN
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Comparison to CFD
« CFD: FGM+NOXx post processing

* CRN: GRI Mech 3.0
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NOx formation mechanisms

Thermal pathway

N,+0=NO+N

Prompt pathway

CH + N, = HCN + N

NNH pathway

N, + H = NNH

Reburn pathway

CH+ NO = HCN + 0
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Location in Combustor

Fuel Inlet 1

Air Inlet
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NOx pathways
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NOx formed in a
section along the
length of the
combustor.

Prompt and NNH
pathways have a
large contribution.

Possible due to large
number of reactors
distributed in the
domain based on
physical phenomenon
captured in CFD

(; [6] A AV Perpignan, R Sampat, A Gangoli Rao, Modelling pollutant emissions of Flameless Combustion with a joint CFD and Chemical
TU Delft Reactor Network approach, Frontiers in Mechanical Engineering 5, 63 November 2019, https://doi.org/10.3389/fmech.2019.00063
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Conclusion

« AGNES: Tool for CFD-CRN developed

» Application on a Combustor

« NOx and CO predictions closer to experiments than that from CFD
* Implementation of detailed Chemical Kinetic Mechanism enabled

NOx formation pathway analysis which shows

- location of formation

- predominance of Prompt and NNH pathways.
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Thank You
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