

Counterparty Credit Exposure Calculation under IMM

23 May 2016

SIAM Student Day

Contents

- Introduction
- Counterparty Credit Exposure Calculation
- An Example
- Latest Developments in Regulations

Introduction (1/4)

- Big Picture Post-crisis:
 - Regulation reforms:
 - ^o Basel 2.5 (IRC: market risk due to credit deterioration in bond issuers)
 - ^o Basel 3 (higher capital ratio; CVA RC)
 - Fundamental Review of Trading Book (new market risk RC framework: VaR to ES, IRC to IDR, etc.)
 - ^o On-going revision of CCR RC, CVA RC, etc.
 - Single Supervisory Mechanism (since Dec 2014)
 - Direct supervision by ECB instead of DNB
 - ^o Stricter regulation: Asset Quality Review; On-site investigation
 - Regarding pricing:
 - Exotic products are less (more standardized products)
 - Pricing for simple products is more complicated (multi-curve)
 - O Short-term interest rates can be negative

Introduction (2/4)

- Topic for today: Credit exposure calculation under IMM (key component for RC CCR and CVA)
- What is counterparty credit risk (CCR)?
 The risk that the counterparty will fail to fulfill their side of the agreements
- Difference to credit risk in loans

 Exposures are not known in advance
- Difference to market risk
 - Market risk: loss in mark-to-market values due to market movements
 - CCR: loss due to default of counterparty

Introduction (3/4)

- Counterparty credit exposure metrics:
 - Expected Exposure (EE)
 - Potential Future Exposure (PFE)
 - Expected Positive Exposure (EPE)
 - Eff. Expected Positive Exposure(EEPE)

Introduction (4/4)

- Means to manage/mitigate CCR
 - Enter collateral agreement: transfer CCR to liquidity risk
 - Set up credit limits in trading activities (needs PFE)
 - Hedging: not always possible
 - Price-in CCR when trading: CVA, DVA (needs EE)
- Regulation requirements:
 - RC for CCR (needs EEPE); Allow own calculation on EE under Internal Model Method (BASEL II)
 - RC for CVA (BASEL III; needs EE)

Counterparty Credit Exposure Calculation (1/2)

Counterparty Credit Exposure Calculation (2/2)

- Main challenges:
 - Selection of risk factor models and calibration of model parameters: main source for model risks
 - Simplest model but complicated enough to capture main properties of the underlying risk factors
 - O Calibration of model parameters
 - Pricing: balance between calculation speed and accuracy
 More assumption thus deviate from front-office price
 double validation standard
 - double validation standard
- Risk neutral or real-world?
 - For PFE calculation: P in risk factor simulation, Q in pricing
 - For CVA calculation: Q in both

Example (1/5)

- CMS cap/floor
 - A series of caplets/floorlets, which are call/put options on constant swap rate.
 - Commonly traded options on CMS rates; used to hedge instruments with long maturities
- Needed main risk factors:
 Yield curve(s)
- Value at time t under forward measure:
- Payoff: $V_t = \delta N P_d(t, \tau_0) \mathbb{E}^{T_{d,0}} \left[P_d(\tau_0, T_p) R_i(\tau_0) | \mathcal{F}_t \right],$

$$R_i(\tau_0) = [w \cdot (S_F(\tau_0; \tau_0, \tau_n) - K)]^+$$

Example (2/5)

• Forward swap rate:

$$S_F(t;\tau_0,\tau_n) := \frac{\sum_{j=1}^n \gamma_j^L P_d(t,\tau_j) F(t;\tau_{j-1},\tau_j)}{\sum_{j=1}^n \gamma_j^F P_d(t,\tau_j)}$$

• Forward Libor rate: (assuming Libor rate is martingale under discount-forward measure)

$$F(t; T_{\mathrm{s}}, T_{\mathrm{e}}) := \mathbb{E}^{T_{d,\mathrm{e}}} \left[L(T_{\mathrm{s}}, T_{\mathrm{e}}) | \mathcal{F}_t \right]$$

• Libor rate: $F(T_{\rm s};T_{\rm s},T_{\rm e}):=L(T_{\rm s},T_{\rm e})$

$$L(t,T) := \frac{1 - P_f(t,T)}{\tau P_f(t,T)}$$

Example (3/5)

 Change to annuity measure (because swaption-vols are quoted as such):

• Rewrite payoff $\overline{S}_F(t;T_s,T_e) := S_F(t;T_s,T_e) + \theta$ $d\overline{S}_F(t;T_s,T_e) = \overline{S}_F(t;T_s,T_e)\overline{\sigma}dW_t^{fted strike:}$

$$(S_F(\tau_0;\tau_0,\tau_n) - K)^+ = (\bar{S}_F(\tau_0;\tau_0,\tau_n) - \bar{K})^+$$

Example (4/5)

• Assume linear swap rate model:

$$\frac{P_d(\tau_0, T_p)}{A(\tau_0; \tau_0, \tau_n)} = \alpha + \bar{\beta}_p \bar{S}_F(\tau_0; \tau_0, \tau_n)$$

• Inserting this into the expectation:

$$\begin{split} & \mathbb{E}^{A} \left[\left. \frac{P_{d}(\tau_{0}, T_{p}) R_{i}(\tau_{0})}{A(\tau_{0}; \tau_{0}, \tau_{n})} \right| \mathcal{F}_{t} \right] \\ &= \mathbb{E}^{A} \left[\left(\alpha + \bar{\beta}_{p} \bar{S}_{F}(\tau_{0}; \tau_{0}, \tau_{n}) \right) \left(\bar{S}_{F}(\tau_{0}; \tau_{0}, \tau_{n}) - \bar{K} \right)^{+} \right| \mathcal{F}_{t} \right] \\ &= \alpha \cdot \mathsf{Opt}_{\mathsf{BS}} \left(\bar{S}_{F}(t; \tau_{0}, \tau_{n}), \bar{K}, \bar{\sigma} \right) + \bar{\beta}_{p} \bar{S}_{F}(t; \tau_{0}, \tau_{n}) \cdot \mathsf{Opt}_{\mathsf{BS}} \left(\bar{S}_{F}^{*}(t; \tau_{0}, \tau_{n}), \bar{K}, \bar{\sigma} \right) \end{split}$$

$$\bar{S}_F^*(t;\tau_0,\tau_n) := \bar{S}_F(t;\tau_0,\tau_n) \cdot \exp\left(\bar{\sigma}^2(\tau_0-t)\right)$$

Example (5/5)

- Calculation steps:
 - Simulate yield curves for a few forecasting dates
 - Loop though all forecasting dates, whereby
 - Loop through all simulated yield curve scenarios, whereby
 - Generate a date strip of the cap/floor and loop though each coupon (caplet/floorlet) period, whereby
 - Generate a data strip of the underlying swap and loop though each Libor period; then aggregate Libor rates according to forward swap rate formula;
 - Apply the CMS caplet/floorlet formula on the swap rate to return the coupon value
 - Sum up discounted coupons to get the MtM value at this forecasting date and for this scenario.
- In the end, we get MtM distributions for all forecasting dates.
- What's more?(Collateral;netting)

Latest Developments in Regulations

- https://www.bis.org/bcbs/publ/d362.pdf
 - EE from IMM is not allowed for CVA VaR any more
 - There might be a floor to CCR RC based on standardized method