Nečas Center for Mathematical Modeling



ERC-CZ project LL1202 - MORE





## On the numerical behaviour of the CG method

#### Tomáš Gergelits, Zdeněk Strakoš

#### Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University in Prague

Student Krylov Day 2015, TU Delft

2 February 2015



T. Gergelits

## Composite polynomial bounds for CG in finite precision arithmetic

Krylov subspaces generated by CG in finite precision arithmetic



Krylov Day '15

Consider preconditioned system

$$Ax = b$$
,  $A \in \mathbb{C}^{N \times N}$  HPD matrix and  $b \in \mathbb{C}^{N}$ .

CG is the projection method which minimizes the energy norm of the error

$$\begin{aligned} x_k &\in x_0 + \mathcal{K}_k(A, r_0), \quad r_k \perp \mathcal{K}_k(A, r_0), \quad k = 1, 2, \dots \\ \mathcal{K}_k(A, r_0) &= \operatorname{span}\{r_0, Ar_0, A^2 r_0, \dots, A^{k-1} r_0\} \\ \|x - x_k\|_A &= \min\{\|x - y\|_A : \ y \in x_0 + \mathcal{K}_k(A, r_0)\}. \end{aligned}$$

# CG is a matrix formulation of the Gauss-Christoffel quadrature

 $\Rightarrow$  The CG method is nonlinear.

## Linear bound for the nonlinear CG method

The error in the CG method satisfies

$$\|x - x_k\|_{\mathcal{A}} = \min_{\substack{\varphi(0) = 1 \\ \deg(\varphi) \le k}} \left\{ \sum_{j=1}^N |\xi_j|^2 \lambda_j \varphi^2(\lambda_j) \right\}^{1/2} \le \min_{\substack{\varphi(0) = 1 \\ \deg(\varphi) \le k}} \max_{\substack{j=1,...,N \\ \deg(\varphi) \le k}} |\varphi(\lambda_j)| \|x - x_0\|_{\mathcal{A}}.$$

The error in the Chebyshev semi-iterative (CSI) method satisfies

$$\|x - x_k^{CSI}\|_{\mathcal{A}} \le |\chi_k(0)|^{-1} \|x - x_0\|_{\mathcal{A}} = \min_{\substack{\varphi(0)=1 \\ \varphi(\varphi) \le k}} \max_{\lambda \in [\lambda_1, \lambda_N]} |\varphi(\lambda)| \|x - x_0\|_{\mathcal{A}}.$$

[Flanders, Shortley (1950), Lanczos (1953), Young (1954); Markov (1884)]

Linear bound is relevant for the CSI method and trivially holds for CG

$$\|\mathbf{x} - \mathbf{x}_k\|_A \le \|\mathbf{x} - \mathbf{x}_k^{CSI}\|_A \le 2\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^k \|\mathbf{x} - \mathbf{x}_0\|_A.$$

[Rutishauser (1959)]

<sup>|</sup>/18

### Idea of composite polynomial convergence bounds

In the case of m large outlying eigenvalues the composite polynomial



[Axelsson (1976), Jennings (1977); cf. van der Sluis, van der Vorst (1986)]

#### CG in finite precision arithmetic

 $\begin{array}{c} \mbox{delay of convergence} \\ \mbox{Short recurrences} \Longrightarrow \mbox{ loss of orthogonality} \Longrightarrow & \& \\ & & \& \\ & & \mbox{rank deficiency} \end{array}$ 

#### Failure of the composite polynomial bound



Krylov Day '15

T. Gergelits

CG in finite precision computations

/18

### Backward-like analysis



Eigenvalues of  $\widehat{A}(k)$  are tightly clustered around the eigenvalues of A. [Paige (1980), Greenbaum (1989), Strakoš (1991)]

In numerical experiments,  $\widehat{A}(k)$  can be replaced (with small inaccuracy) by an "universal"  $\widehat{A}$  with sufficiently many eigenvalues in tiny clusters around the eigenvalues of A.

[Greenbaum, Strakoš (1992)]

Minimization problem which bounds the CG convergence behaviour in finite precision arithmetic is

$$\min_{\substack{\varphi(0)=1\\ \varphi(\varphi)\leq k}} \max_{\substack{\lambda\in\sigma(\widehat{A})}} |\varphi(\lambda_j)|$$

with the spectrum of the matrix  $\widehat{A}$ 

$$\sigma(\widehat{A}) \equiv \bigcup_{j=1,\dots,N} \left\{ \widehat{\lambda}_{j,1},\dots, \widehat{\lambda}_{j,l} \right\}, \quad \widehat{\lambda}_{j,\cdot} \in [\lambda_j - \Delta, \lambda_j + \Delta] \quad \text{with tiny } \Delta.$$

Consequently, the upper bound based on the composite polynomial must be based on

$$\max_{\lambda \in \sigma(\widehat{A})} \left| q_m(\lambda) \frac{\chi_{k-m}(\lambda)}{\chi_{k-m}(0)} \right|.$$

Krylov Day '15



The composite polynomial is very steep in the neighbourhood of the outlying eigenvalues and thus the corresponding bound (dashed line) blows up.

/18

Analysis assuming exact arithmetic is an oxymoron.

short recurrences – loss of orthogonality.

long recurrences – no CG method

Uniform spectrum, small condition number - the CSI method.



Krylov Day '15

## Composite polynomial bounds for CG in finite precision arithmetic

Krylov subspaces generated by CG in finite precision arithmetic



Krylov Day '15

T. Gergelits

### Idea of shift

We relate: k-th iteration of FP CG  $\iff$  *I*-th iteration of exact CG

- $k l \approx$  delay of convergence
- $k l \approx$  rank-deficiency of computed Krylov subspace

We want to study:

$$\begin{aligned} \|x - \overline{x}_k\|_A & \times & \|x - x_l\|_A \\ \overline{x}_k & \times & x_l \\ \overline{\mathcal{K}}_k(A, r_0) & \times & \mathcal{K}_l(A, r_0) \end{aligned}$$



<sup>12</sup>/<sub>18</sub>



T. Gergelits





Krylov Day '15

T. Gergelits





Krylov Day '15

T. Gergelits



Trajectories of approximation vectors are very similar in space  $\mathbb{C}^N$ .



CG in finite precision computations

<sup>13</sup>/<sub>18</sub>



Trajectory of approximations  $\overline{x}_k$  generated by FP CG computations follows closely the trajectory of the exact CG approximations  $x_l$ .

## Comparison of Krylov subspaces

#### Principal angles and vectors

$$\vartheta_{j} = \min_{\substack{p \in \mathcal{F}_{j} \\ \|p\|=1 }} \min_{\substack{q \in \mathcal{G}_{j} \\ \|q\|=1}} \arccos\left(p^{*}q\right) \equiv \arccos\left(p_{j}^{*}q_{j}\right), \quad j = 1, 2, \dots, l$$

where

$$\begin{aligned} \mathcal{F}_j &\equiv \mathcal{F} \cap \{p_1, \dots, p_{j-1}\}^{\perp}, \qquad \mathcal{G}_j \equiv \mathcal{G} \cap \{q_1, \dots, q_{j-1}\}^{\perp}, \\ \mathcal{F} &= \overline{\mathcal{K}}_k(\mathcal{A}, r_0), \qquad \qquad \mathcal{G} = \mathcal{K}_l(\mathcal{A}, r_0). \end{aligned}$$



For more difficult problems, the subspaces can depart in few directions.



<sup>16</sup>/18

## Summary II and outlook

- The convergence rate of finite precision CG and exact CG typically significantly differs.
- The trajectories of computed approximations are enclosed in a shrinking "cone".
- Apart from the delay, the computed Krylov subspaces do not depart much from their exact arithmetic counterparts.
  - Study further the properties of principal vectors, find relationship to the structure of invariant subspaces.
  - Study the effect of clustered eigenvalues.

#### Acknowledgement

This work has been supported by the ERC-CZ project LL1202, by the GACR grant 201/13-06684S and by the GAUK grant 695612.

### References

#### References

- T. Gergelits and Z. Strakoš, Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations, Numer. Algorithms, 65 (2014), pp. 759–782.
- J. Liesen and Z. Strakoš, *Krylov Subspace Methods: Principles and Analysis*, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2013.
- J. Málek and Z. Strakoš, *Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs*, SIAM Spotlight Series, 2015.

