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Rational least squares fitting

Given the data (λj , fj)
N
j=1 find a rational function rm =

pm

qm
such that

N∑
j=1

|fj − rm(λj)|2 → min.

Example:
[λ1, . . . , λN ][λ1, . . . , λN ]

given sampling
frequencies

fj = f (λj)fj = f (λj)

available transfer
function measurements
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Rational least squares fitting

Given the data (λj , fj)
N
j=1 find a rational function rm =

pm

qm
such that

N∑
j=1

|fj − rm(λj)|2 → min.

Example:
[λ1, . . . , λN ][λ1, . . . , λN ]

given sampling
frequencies

fj = f (λj)fj = f (λj)

available transfer
function measurements

A = diag(λj)

F = diag(fj) = f (A)

b =
[
1, . . . , 1

]T
N∑

j=1

|fj − rm(λj)|2 = ‖f (A)b− rm(A)b︸ ︷︷ ︸
∈Qm+1(A,b)

‖22
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Rational Krylov spaces

Throughout the talk A ∈ CN×N , v ∈ CN and qm ∈ Pm.

Rational Krylov space

Qm+1(A, v, qm) := qm(A)−1Km+1(A, v).

Km HmA Vm+1 = Vm+1

RVm+1 = Qm+1(A, v, qm)(
Hm,Km

)
unreduced upper-Hessenberg (m + 1)×m pencil and

such that {hj+1,j/kj+1,j}mj=1 are the roots of qm, i.e., the poles
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Pole reallocation is achieved by replacing the starting vector

For any nonzero q̆m ∈ Pm with roots disjoint from Λ(A) there holds

Qm+1(A, v, qm) = Qm+1(A, q̆m(A)qm(A)−1v, q̆m).

New starting vector v̆ = q̆m(A)qm(A)−1v = Vm+1c, c 6= 0.

Take nonsingular P ∈ C(m+1)×(m+1) such that Pe1 = c.
A
(
Vm+1P

)(
P−1Km

)
=
(
Vm+1P

)(
P−1Hm

)
QZ on the lower m ×m part to obtain AV̆m+1K̆m = V̆m+1H̆m.

A =
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Rational least squares fitting

Given
{A,F} ⊂ CN×N , and a
unit 2-norm vector v ∈ CN ,

we consider the following rational least squares problem.

Find a rational function rm =
pm

qm
of type (m,m) such that

‖Fv − rm(A)v‖22 → min.
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Rational Krylov Fitting (RKFIT) for ‖Fv− rm(A)v‖22 → min

Take initial guess qm and iterate the following.

1 Compute orthonormal basis Vm+1 for Qm+1 = Qm+1(A, v, qm).
2 Solve the following linear problem.

Find v̆ ∈ Qm+1 s. t. F v̆ is best approximated by an element of Qm+1.

v̆ = argmin
y=Vm+1c
‖y‖2=1

‖(I − Vm+1V
∗
m+1)Fy‖2

Compute the SVD of FVm+1 − Vm+1 (V ∗m+1FVm+1).

3 Set qm := q̆m where q̆m is such that v̆ = q̆m(A)qm(A)−1v.

Approximate solution rm is given implicitly as
rm(A)v = Vm+1V

∗
m+1Fv, where RVm+1 = Qm+1(A, v, qm).
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Fitting an artificial frequency response

f is a (19, 18) rational function, f (z) = f (z)

N = 200
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Exponential of a nonnormal matrix, ‖ exp(A)v − rm(A)v‖22 → min

A = −5 grcar(100, 3)

F = f (A), with f = exp, and v =
[
1 . . . 1

]T
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A Rational Krylov Toolbox for MATLAB

N = 100;
A = -5* g a l l e r y ('grcar',N,3);
v = ones(N,1);
F = expm(A); exact = F*v;

poles = i n f *ones(1, 16);
f o r iter = 1:3
[poles ,ratfun ,misfit] = r k f i t (F,A,v,poles ,'real');
rel_misfit = misfit/norm(exact);
d i sp ( s p r i n t f ('iter %d: %e',[iter rel_misfit ]))

end

iter 1: 1.814195e-11
iter 2: 6.863362e-13
iter 3: 6.843369e-13
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Summary

Introduced RKFIT. Based on
discrete orthogonal rational functions, and
pole reallocation within Qm+1(A, v, qm).

Observed better numerical stability than VFIT.

References

M. Berljafa and S. Güttel, A Rational Krylov Toolbox for MATLAB.
The University of Manchester, MIMS EPrint 2014.56.
Available at http://guettel.com/rktoolbox/.

M. Berljafa and S. Güttel, Generalized rational Krylov decompositions with
an application to rational approximation.
The University of Manchester, MIMS EPrint 2014.59.

B. Gustavsen and A. Semlyen, Rational approximation of frequency domain
responses by vector fitting, IEEE Trans. Power Del., 14 (1999),
pp. 1052–1061.

Mario Berljafa RKFIT 14 of 14

http://guettel.com/rktoolbox/


Summary

Introduced RKFIT. Based on
discrete orthogonal rational functions, and
pole reallocation within Qm+1(A, v, qm).

Observed better numerical stability than VFIT.

References

M. Berljafa and S. Güttel, A Rational Krylov Toolbox for MATLAB.
The University of Manchester, MIMS EPrint 2014.56.
Available at http://guettel.com/rktoolbox/.

M. Berljafa and S. Güttel, Generalized rational Krylov decompositions with
an application to rational approximation.
The University of Manchester, MIMS EPrint 2014.59.

B. Gustavsen and A. Semlyen, Rational approximation of frequency domain
responses by vector fitting, IEEE Trans. Power Del., 14 (1999),
pp. 1052–1061.

Mario Berljafa RKFIT 14 of 14

http://guettel.com/rktoolbox/

	Rational Krylov spaces
	Rational Arnoldi decomposition
	Pole reallocation

	Rational least squares approximation
	RKFIT
	Numerical experiments
	A Rational Krylov Toolbox for MATLAB

	Summary

