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“ the signal in the presence of a field 
gradient represents a one-

dimensional projection of the H2O 
content of the object, integrated over 

planes perpendicular to the gradient 
direction, as a function of the gradient 
coordinate….”

“… combine several projections, … 
using one of the available methods for 
reconstruction of objects from their 

projections.”

Heavy water (D2O)
Water (H2O)



One method of constructing a two-
dimensional projected image of the 
object, …,  is to combine several 

projections, obtained by rotating the 
object about an axis perpendicular to 
the gradient direction (or, as in Fig. 1, 
rotating the gradient about the object), 
using one of the available methods 

for reconstruction of objects from their 
projections.

“The variations in water contents 

and proton relaxation times among 

biological tissues should permit the 
generation (…) of useful 
zeugmatographic images (…). A 
possible application of considerable 
interest at this time would be to the 
in vivo study of malignant tumours …”







1975: Enters Fourier transform

“(…) The spatial spin density function can then be reconstructed by a 
straightforward two- or three-dimensional Fourier transformation. One of the 
important features of this method is the homogenous error distribution over 

the entire frequency range such that low and high frequency components can 
be reconstructed with equal accuracy. The method can easily be implemented on 
a small on-line computer.”



The early ’80s: shaping the k-space

“In the spin warp technique, all the projections are along the same

direction, and therefore inhomogeneity will manifest itself only as a 
geometric distortion in the final image; there will be no smearing of 

imaging information.”

FFT for image reconstruction

1980



The early ’80s: shaping the k-space

64 x 64 FFT

1980



The early ’80s: shaping the k-space

1983



The early ’80s: shaping the k-space

1983



The early ’80s: shaping the k-space

Ljunggren, 1983



The early ’80s: shaping the k-space

“ …, it is believed that many unnecessary mathematical complications 
such as the use of the so-called projection functions may be avoided
in this way”

“The rather loosely outlined applications suggested above should not 
be taken too seriously.”

Ljunggren, 1983
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MRI by 1983



• MRI becomes a mature/robust technique

• Numbers of clinical scanners (and scans) steadily increase in US and 
Europe

MRI through the ’90s



MRI through the ’90s

D.A. Squires, The Commonwealth Fund, 2012



Making MRI cheaper 
= faster



Parallel Imaging (From 1997)

Image from Deshmane et al JMRI 2012

Employ several receiver antennas, 
simultaneously

Individual additional spatial 
information

Undersample the k-space



Parallel Imaging (From 1997)

Coil dependent spatial weighting



Parallel Imaging (From 1997)

Image from Prussmann NMR Biomed 2006



Parallel Imaging (From 1997)

Parallel imaging leads to (large scale) least-squares 
reconstruction
→ iterative methods (CG, LSQR)
→ preconditioning
→ Tikhonov regularization



• Since 1970s in several applied fields : exploit sparse 
representation of data through l1 norm for regularization of ill-
conditioned/underdetermined systems

• Beginning 2000s, California: Candes (Stanford), Romberg 
(Caltech/UCLA), Tao (UCLA), Donoho (Stanford). Theoretical 
foundations are laid. Correct recovery from highly undersampled
data (!). Concept of incoherence/randomization.

• 2004: Convex Optimization book by Boyd & vandenBerghe (more 
than 35,000 citations by May 2017). Tractable algorithms.

The magic of compressed sensing





2007

(10-fold undersampling)



• Development of l2/l1 minimization algorithms

• Optimal undersampling schemes?

• Optimal sparse representation?

• CS-MRI is now a clinical product from major vendors (modern math 
enters the clinic!) 

Compressed sensing in MRI



• Recover image, M, such that  M = L + S
• L : low-rank matrix (temporally correlated background)
• S : sparse matrix (dynamic information on top of background)

Recent developments in CS MRI

Nuclear norm
(Sum of sing. Values)

Otazo, Candes, Sodickson 2014



• Recover image, M, such that  M = L + S
• L : low-rank matrix (temporally correlated background)
• S : sparse matrix (dynamic information on top of background)

Recent developments in CS MRI

Otazo, Candes, Sodickson 2014

8-fold undersampling



Can we scan faster?

The future of MRI



• So far, MRI reconstruction was more or less:

minm || Fm – d || + λ || Cm ||

• Further undersampling by introducing physical constraints

minm,p || Fm – d || + λ || Cm || 
s.t. g(m,p) = 0 (physical model)



The Bloch equation (1946)

Local behaviour of nuclear magnetization:

Experimental setting (t)
State (t,r)
Parameter (r) Unknown

Felix Bloch (1905-1983)
Nobel Prize in 1952



FFT

Quantitative

Parameters

State, m

Model
Inversion

Forward model



minm,p || Fm – d || + λ || Cm || 
s.t. g(m,p) = 0 (Bloch eq.)

• So far, linear operators (FFT, Parallel imaging spatial weight 
functions, sparsify transforms …)

• Bloch equation is nonlinear in the model parameters
1) computational complexity 
2) non-convexity



MR fingerprinting (Dan Ma et al, Nature 2013)
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MR fingerprinting (Dan Ma et al, Nature 2013)

t

Measured state

Exhaustive search
pre-computed 

dictionary of signal 
responses 

Parameters
T1,
T2,
ρ,



Jiang Y. et al, MRM 2015

8 seconds
scan



Exponential growth for:
a) Computing time
b) Memory
c) Exhaustive search (matching)

MRF Dictionary. Computational complexity

# of parameters Computing Time* Memory*

4 17 hrs 400 Gb

6 43,000 hrs 960,000 Gb

Note:
SVD compression accelerates 
matching but growth is still 
exponential.
SVD of 1000 Tb matrix!

Cost for constructing and storing the dictionary



MRF without dictionary? 

Measured time signal Signal model (incl. slice profile)

T1,T2,ω,B1

Gradient-based iterations. Advantages:
• No dictionary. 
• Complexity is linear in # of parameters: Extra parameter → small 

increase

complex



MRF without dictionary? 

Measured time signal Signal model (incl. slice profile)

T1,T2,ω,B1

Gradient-based iterations. Tackle:
1. Poor performance for large data-model discrepancy
2. Local minima for nonconvex functions.

complex



Experimental setting θ(t)

global minimum
Many local minima!

Minimization landscape
Optimization landscape [a.u.]
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Bloch equation response and undersampling artifacts both high 
frequency:
→ difficult to separate, everything looks like noise

Large data/model discrepancy in MRF

True signal
Undersampling artifacts

θ(t)



Low-pass experiment design

Find the experimental setting θ(t):

Sensitivity

Smooth response

Physical limit
Sbrizzi, Bruijnen, van den Berg ISMRM 2017



θ [o]

time

Optimization landscape [a.u.]

T1 [s]

ω [Hz]

Sbrizzi, Bruijnen, van den Berg ISMRM 2017



Model-based reconstruction
minm,p || Fm – d || + λ || Cm || 

s.t. g(m,p) = 0 (physical model)

MR Fingerprinting approach:
m* = arg minm,p || Fm – d || + λ || Cm || 

pj* = arg min || g(mj*, pj) || for all j

What about F ?
“it should not be taken too seriously” (Ljunggren, 1983) 



MR Spin TomogrAphy in Time-domain (MR-STAT)
Space/time dependence

T1(r),T2(r),ρ(r),
ΔB0(r)…

Volumetric integral
Acquire signal:
Forward Model

Reconstruction:
Invert Model

time
si

gn
al

Sbrizzi, van der Heide, van den Berg. arXiv 2017



MR-STAT reconstruction

Time-data signal model

Sbrizzi, van der Heide, van den Berg. arXiv 2017



MR-STAT reconstruction 

T1

T2

True Recon
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True Recon

Sbrizzi, van der Heide, van den Berg. arXiv 2017



• ’70s and ’80s: toward a reliable, robust model. From radial 
projections to FFT. Experimental design is devoted to fit in the FFT 
framework (k-space) 

• ’90s and ’00s: model is extended to parallel imaging and CS.  FFT is 
still fundamental part of solution to linear systems. Iterative methods 
for large scale (l2/l1) regularized least squares.

• Present (and future?): physical modelling and simulations directly 
included in reconstruction. Nonlinearity, non-convexity, 
computational complexity. Numerical experimental design. AI.

Summary
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