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PART 1
Classic MLMC



The KU Leuven UQ team

• NUMA: numerical analysis and applied mathematics
• 11 professors, about 40 postdocs and PhD students
• Working on UQ:

S. Vandewalle P. Robbe A. Van Barel P. Blondeel
Professor PhD student PhD student PhD student

+ collaborations with prof. D. Nuyens and prof. G. Samaey
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Model parametric elliptic PDE

−∇ · a(x , y)∇u(x , y) = f (x)

• early work
- [Ghanem, Spanos, 1997]

- [Babuska, Tempone, Zouraris, 2004]

- [Babuska, Nobile, Tempone, 2007]

- and many others

• parametric PDE setting in
- [Cohen, DeVore, Schwab, 2011]

• recent interest from multilevel/QMC community
- [Graham, Kuo, Nuyens, Scheichl, Sloan, 2011]

- [Cliffe, Giles, Scheichl, Teckentrup, 2011]

- [Kuo, Schwab, Sloan, 2012]

- [Kuo, Nuyens, 2016]

- and many others
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Example

• a(x , y) is derived from a Gaussian random field z(x , y) with
given mean z0(x) and covariance function, e.g.,

C (x , x ′) =
21−ν

Γ(ν)

(√
2νr
)ν

Kν
(√

2νr
)

, r =
‖x − x ′‖2

λc

• Samples can be generated using a KL expansion

z(x , y) =
∑
j≥1

yj
√
θjψj(x)

where the eigenvalues θj and eigenfunctions ψj(x) satisfy∫
D
C (x , x ′)ψj(x ′)dx ′ = θjψj(x)

and the yj are standard normal random numbers

• a(x , y) = exp(z(x , y)) is known as the “ lognormal case”
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Example Gaussian random fields

λc = 0.8 λc = 0.5 λc = 0.1 λc = 0.05
ν

=
2

ν
=

1
ν

=
0.
5

see GaussianRandomFields.jl
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Sampling based methods

• Goal: compute statistics of quantity of interest

Q = F (u(x , y))

quantity of interest is uncertain, denote F (y) := F (u(x , y))

1: Draw a sufficiently large sample set y (1), y (2), . . . , y (N)

2: for n = 1 to N do
3: Compute the random field a(x , y (n))
4: Solve a deterministic PDE using method of choice
5: Compute the quantity of interest F (y (n))
6: end for

• Example: the Monte Carlo (MC) estimator for E[Q] is

QMC =
1
N

N∑
n=1

F (y (n))
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A hierarchy of coarser grids

` = 0 ` = 1 ` = 2

• Solution of the PDE (and hence quantity of interest F ) is
approximated numerically
• Suppose we have a hierarchy of approximations F`,
` = 0, . . . , L and F` → F as `→∞
• Do not compute E[FL] by sampling from FL,

but by sampling from the whole hierarchy F`, ` = 0, . . . , L
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Multilevel Monte Carlo (MLMC)

• Basis is the telescoping sum

E[FL] = E[F0] +
L∑
`=1

E[F` − F`−1]

• MLMC estimator uses Monte Carlo to estimate each term:

QMC
L =

L∑
`=0

1
N`

N∑̀
n=1

(
F`(y

(n)
` )− F`−1(y (n)

` )
)

(F−1 := 0)

• Crucially, use the same random numbers y (n)
` in each sample

V` := V[F` − F`−1] = V[F`] + V[F`−1]− 2cov(F`,F`−1)

� V[F`] + V[F`−1]

• Most samples will be taken on the coarse grid, where samples
are cheap, and only few samples are needed on the finest grid
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PART 2
Extensions of MLMC



Full Multigrid (FMG)

• Full Multigrid can compute a solution to discretization
accuracy in O(M) time, where M is the number of DOF
• FMG also computes free solutions on coarser grids

V-cycle FMG-cycle

Ωh

Ω2h

Ω4h

I2h
h

I4h
2h

Ih
2h

I2h
4h
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Multigrid Multilevel Monte Carlo (MG-MLMC)

• Idea is to recycle the coarse solutions from the FMG method
as coarse samples in the MLMC method
• MG-MLMC estimator [Kumar, Oosterlee, Dwight, 2017]

QMC
L,reuse :=

L∑
`=0

(
1∑L

i=`Ni

)
L∑

k=`

Nk∑
n=1

(
F`(y

(n)
k )− F`−1(y (n)

k )
)

• This is a sum of L + 1 estimators Y`, i.e.,

QMC
L,reuse :=

L∑
`=0

Y`,

that are not independent
• Accuracy of estimator is controlled using mean-square-error

MSE
(
QMC

L,reuse

)
= V[QMC

L,reuse] + Bias
(
QMC

L,reuse

)2
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Obtaining a variance estimate

• Variance of the MG-MLMC estimator is

V[QMC
L,reuse] =

L∑
`=0

V[Y`] + 2
∑

0≤`<τ≤L
cov(Y`,Yτ )

=
L∑
`=0

(
V`∑L
i=`Ni

)
+ 2

∑
0≤`<τ≤L

ρ`τ

√√√√( V`∑L
i=`Ni

)(
Vτ∑L
i=τ Ni

)

• 3 approaches to obtain variance estimates:

1. Bound the covariances using Cauchy-Schwarz:
analytic solution for the optimal number of samples required
on each level, but the error bound is too conservative

2. Use the de-biasing technique from [Rhee, Glynn, 2015]:
randomization of the final level L

3. Randomly shifted lattice rules from Quasi-Monte Carlo
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Quasi-Monte Carlo (QMC)
• A Quasi-Monte Carlo method uses well-chosen sample

points, as opposed to the random points with Monte Carlo
• A popular choice are rank-1 lattice rules

t(n) :=
nz mod N

N
=
{nz
N

}
where z ∈ Zs

N is a generating vector and {·} denotes mod 1

• Can potentially obtain O(1/N) convergence, if integrand is
sufficiently smooth and decaying importance of dimensions1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1more details to be found in standard works such as [Dick, Kuo, Sloan, 2013]
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Random shifting

• Lattice points are chosen deterministically, hence,
they are correlated
• Solution is random shifting:

Q̄QMC
L,P,reuse :=

1
P

P∑
p=1

L∑
`=0

(
1∑L

i=`Ni

)
L∑

k=`

Nk∑
n=1

(
F`(y

(n)
k,p)− F`−1(y (n)

k,p)
)

where y (n)
k,p := Φ−1

({
t(k)` + u(p)

k

})
and u(p)

k ~U(0, 1)

• Sample variance is used as an estimate for the variance

V[Q̄QMC
L,P,reuse] ≈

1
P(P − 1)

P∑
p=1

(
QQMC

L,p,reuse − Q̄QMC
L,P,reuse

)2
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Cost analysis

• Under the assumptions that

(1) |E[QL − Q]| ≤ cαh
α
L ,

(2) V` ≤ cβh
β
`−1,

(3) C` ≤ cγh
−γ
` , and

(4) V[Ȳ`] ≤ cλN
−1/λ
` V`.

we can show that

cost(Q̄QMC
L,P,reuse) =

(
1−

(
s−(β+γ)

) λ
λ+1
)
cost(Q̄QMC

L,P )

• This means that the sample reuse is more efficient when
- The variance of the difference decays slowly (small β)
- The lattice rule has good performance (small λ)
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Numerical results

λ = 0.1, ν = 0.5
3500 KL terms
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~1.34 with MLQMC

~2.59 with MLQMC (reuse)
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Numerical results

λ = 0.3, ν = 1
1000 KL terms
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Numerical results

λ = 0.5, ν = 2
100 KL terms
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Numerical results
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PART 3
Application: Wire drawing and Bekaert



Bekaert

• Belgian company, est. 1880
• Steel wire transformation and coatings
• 30.000 people in 120 countries
• Physical Modelling Team
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Wire drawing test case
• 2d axisymmetric geometry

with die and wire

• 22 uncertainties:
geometrical, physical,
process-related. . .

• Quantity of interest:
drawing force, stress
distribution after several
drawing passes
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Selection of coarse approximations

(0,0) (0,2)

(3,0) (3,2)
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Results
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Conclusions

• MLMC is an efficient variance reduction technique
- Estimate differences between subsequent approximations and
exploit telescoping sum to obtain cost reduction

- Most samples are taken on the coarse grids, and only few
samples are required on the finest grid

- All benefits of Monte Carlo methods remain

• Discussed the MG-MLQMC extension
- FMG solver yields free samples on coarse grids
- Can be reused if care is taken not to introduce additional
statistical error (→ random shifting from QMC)

• Application to real-life engineering problem
- Can couple with existing code without much effort
- Large gain by using the MLQMC method

Thank you for your attention
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