Market risk measures with stochastic liquidity horizon by Shannon wavelet expansions

G. Colldefforns-Papiol1,2 L. Ortiz-Gracia1,2 C.W. Oosterlee3,4

1Centre de Recerca Matematica (Barcelona, Spain), 2Universitat Autonoma de Barcelona (Barcelona, Spain), 3Delft University of Technology (Delft, The Netherlands), 4Centrum Wiskunde & Informatica (Amsterdam, The Netherlands)

Student Computational Finance Day 2016
Delft, 23rd of May 2016
Outline
1 Motivation
 - Risk measures
 - VaR and ES
 - Crisis
 - Our purpose

2 SWIFT
 - Multiresolution analysis
 - Shannon wavelets
 - SWIFT

3 Efficient computation of liquidity-adjusted risk measures
 - VaR by SWIFT
 - ES by SWIFT
 - VaR and ES with SLH
 - Results

4 Conclusions
Motivation
Risk measures

Definition

Given a probability space \((\Omega, \mathcal{F}, \mathbb{P})\) and a time horizon \(\Delta t\). Denote by \(\mathcal{L}\) the set of all random variables on \((\Omega, \mathcal{F})\) (representing the portfolio returns/loses over a time horizon \(\Delta t\)). Then, **risk measures** are real-valued maps \(\rho : \mathcal{L} \rightarrow \mathbb{R}\).

A risk measure is **coherent** if it satisfies: normality, monotonicity, sub-additivity, positive homogeneity and translation invariance.

- **Use**: determine the amount of currency to keep in reserve.
- **Purpose**: make the risks taken by financial institutions \(\{\text{banks, insurance companies}\}\) acceptable to the regulator.
- The most famous: **VaR** and **ES**.
Value at Risk (VaR) and Expected Shortfall (ES)

Definition

Given a confidence level $\alpha \in (0, 1)$. Being L a loss.

The VaR_α is the smallest number l such that the probability that the loss L exceeds l is at most $(1 - \alpha)$. I.e.

$$\text{VaR}_\alpha(L) = \inf\{l \in \mathbb{R} : P(L > l) \leq 1 - \alpha\}.$$

The ES_α is defined by

$$\text{ES}_\alpha(L) := \frac{1}{1 - \alpha} \int_\alpha^1 \text{VaR}_u(L) \, du.$$

- VaR is a quantile of the loss distribution.
- VaR is not a coherent risk measure, not satisfies sub-additivity.
- ES is more sensitive to the shape of the loss distribution in the tail of the distribution. ES is a coherent risk measure.
The financial crisis, review of BCBS

Basel Committee of Banking Supervision (BCBS) stated:

- The crisis exposed:
 - Weaknesses in the framework design for capitalizing trading activities.
 - Insufficient capital level required against trading book exposures to absorb losses.

- Review/assessment:
 - From VaR to ES, due to the inability to capture the risk in the tail.
 - Incorporate market liquidity risk. The time it takes to liquidate a risk position varies; thus, the horizon should be extended.
Our purpose

- Produce a **set of numerical techniques** to address the challenge of the VaR and ES computation under a stochastic liquidity horizon framework (idea from Brigo and Nordio, 2015).

- To do so, we use **SWIFT**. Because:
 - In the scenarios we work, the **characteristic function** of the density is known. Thus, makes sense a Fourier inversion method.
 - Densities with stochastic holding period have fat tails, so we do no need to rely on a **truncation range**.
 - Make use of **wavelets** properties to get the risk measures values.
 - Analysis of the **error** is available.
 - There are rules on how to select the **parameters**.
SWIFT
Shannon Wavelet Inverse Fourier Technique
Definition

Let $V_j, j = \cdots, -2, -1, 0, 1, 2, \cdots$ be a sequence of subspaces of functions in $L^2(\mathbb{R})$. The collection of spaces $(V_j)_{j \in \mathbb{Z}}$ is called a multiresolution analysis (MRA) of $L^2(\mathbb{R})$ with scaling function $\phi \in V_0$, if the following conditions hold:

1. (nested) $V_j \subset V_{j+1}$,
2. (dense) $\overline{\bigcup V_j} = L^2(\mathbb{R})$,
3. (separation) $\cap V_j = \{0\}$,
4. (scaling) The function $f(x)$ belongs to V_j if and only if the function $f(2x)$ belongs to V_{j+1},
5. (orthonormal basis) The function ϕ belongs to V_0 and the set $\{\phi(x - k), k \in \mathbb{Z}\}$ is an orthonormal basis (using the L^2 inner product) for V_0.

MRA defines general wavelet structures in $L^2(\mathbb{R})$.
The set of functions

\[\{ \phi_{m,k}(x) = 2^{m/2} \phi(2^m x - k); k \in \mathbb{Z} \} \]

is an orthonormal basis for \(V_m \).

Lemma

Let us define \(P_m f \) as the orthogonal projection of a function \(f \in L^2(\mathbb{R}) \) on the space \(V_m \), constructed by

\[P_m f(x) = \sum_{k \in \mathbb{Z}} c_{m,k} \phi_{m,k}(x), \]

where \(c_{m,k} = \int_{\mathbb{R}} f(x) \bar{\phi}(x) dx \). Then, the convergence of the projection \(P_m f(x) \) holds in the \(L^2(\mathbb{R}) \) – norm.
Shannon wavelets

- **Cardinal sine function (sinc):**

\[\phi(x) = \text{sinc}(x) := \frac{\sin(\pi x)}{\pi x} \]
(Shannon scaling function).

- **Simplicity in the Fourier domain:**

\[\hat{\phi}(\omega) := \int_{\mathbb{R}} \phi(x)e^{-i\omega x} \, dx = \text{rect} \left(\frac{\omega}{2\pi} \right). \]
Let us consider a density function \(f \in L^2(\mathbb{R}) \). Assuming \(\hat{f} \) to be known. Following MRA we approximate \(f \) by \(f_m \):

\[
f(x) \approx f_m(x) := \sum_{k=k_1}^{k_2} c_{m,k}^* \phi_{m,k}(x),
\]

where \(c_{m,k}^* \approx c_{m,k} = \langle f, \phi_{m,k} \rangle \) (scaling coefficients).

Approximation technique:

- **Step 1:** Projection on the space \(V_m \) (seen).
- **Step 2:** Truncation of the infinite sum.
- **Step 3:** Approximation of the scaling coefficients by assuming known the characteristic function of \(f \).
Lemma

The scaling coefficients \(c_{m,k} \) satisfy,

\[
\lim_{k \to \pm \infty} c_{m,k} = 0.
\]
Proof.

The set of Shannon scaling functions in V_m is defined as

$$\phi_{m,k}(x) = 2^{m/2} \frac{\sin(\pi(2^m x - k))}{\pi(2^m x - k)}, \quad k \in \mathbb{Z}.$$

Thus, for $h \in \mathbb{Z}$,

$$\phi_{m,k} \left(\frac{h}{2^m} \right) = 2^{m/2} \delta_{k,h},$$

being $\delta_{k,h}$ the Kronecker delta. It gives us that

$$P_m f \left(\frac{h}{2^m} \right) = 2^{m/2} \sum_{k \in \mathbb{Z}} c_{m,k} \delta_{k,h} = 2^{m/2} c_{m,h}.$$

Since f is a density function, we assume it to tend to zero at plus and minus infinity.
To do so, we make use of Vieta’s formula.

Vieta’s formula

\[
sinc(t) := \frac{\sin(\pi t)}{(\pi t)} \approx \frac{1}{2^{J-1}} \sum_{j=1}^{2^{J-1}} \cos \left(\frac{2j - 1}{2^J} \pi t \right).
\]

Using Vieta’s formula and some algebraic manipulation, one arrives to the coefficients expression.

Coefficients approximation

\[
c_{m,k} \approx c_{m,k}^* := \frac{2^{m/2}}{2^{J-1}} \sum_{j=1}^{2^J} \text{Re} \left[\hat{f} \left(\frac{(2j - 1) \pi 2^m}{2^J} \right) e^{\frac{ik\pi (2j-1)}{2^J}} \right].
\]

- Note the need of the characteristic function.
We can evaluate the density at the extremes of the interval and compute the area underneath the density function as a byproduct, since

\[f_m \left(\frac{h}{2^m} \right) = 2^{\frac{m}{2}} c_{m,k}, \ h \in \mathbb{Z}. \]

Then

\[A = \frac{1}{2^{\frac{m}{2}}} \left(\frac{c_{m,k_1}}{2} + \sum_{k_1 < k < k_2} c_{m,k} + \frac{c_{m,k_2}}{2} \right). \]
Efficient computation of liquidity-adjusted risk measures
We recover the density function of the portfolio change ΔV from its Fourier transform, carrying out the Fourier inversion by means of SWIFT.

We speed up the computation by using a FFT algorithm.

We look for the α-quantile of the distribution. To do so:

1. We find h and $h+1$ such that 2^m VaR is located between these two values (it is a sum of trapezoids).

2. We can accurately compute the VaR using a bisection method within the interval $\left[\frac{h}{2^m}, \frac{h+1}{2^m} \right]$.
Using Vieta’s formula

\[
\text{ES}(\alpha) = \frac{1}{1 - \alpha} \int_{\text{VaR}(\alpha)}^{+\infty} xf(x) \, dx
\]

\[
\approx \frac{1}{1 - \alpha} \int_{\text{VaR}(\alpha)}^{b} x \sum_{k=k_1}^{k_2} c_{m,k} \phi_{m,k}(x) \, dx.
\]
Let us assume we have the Fourier transform of the deterministic situation: \(\hat{f}_{\Delta V} \).

We assume that the stochastic holding period \(\Delta t \) follows a process with density function \(f_{\Delta t} \).

Making use of the rule \(\mathbb{E} [\mathbb{E} [X \mid Y]] = \mathbb{E} [X] \), we have

\[
\hat{f}_{\Delta V(\Delta t)} (u) = \int_{\mathbb{R}} \hat{f}_{\Delta V} (u) f_{\Delta t} (h) \, dh.
\]

Then, using a numerical integration quadrature we compute VaR and ES as in the deterministic situation.
There exists closed form solution.

The characteristic function of the log-return portfolio change is

\[\hat{f}_{\Delta X_{\Delta t}}(u) = e^{-i\mu u \Delta t - \frac{(\sigma u)^2}{2} \Delta t}. \]

(a) $\Delta t = 1/365$.

(b) $\Delta t \sim \exp(10)$.
Results: Under delta-gamma approach (1)

Delta-gamma approximation

It consists of approximate the change in a portfolio value ΔV by

$$
\Delta V \approx \Delta V_\gamma := \Theta \Delta t + \delta^T \Delta S + \frac{1}{2} \Delta S^T \Gamma \Delta S,
$$

where $S(t) = (S_1(t), \cdots, S_p(t))^T$ are the risk factors, $\Theta = \frac{\partial V}{\partial t}$, $\delta_i = \frac{\partial V}{\partial S_i}$ and $\Gamma_{i,j} = \frac{\partial^2 V}{\partial S_i \partial S_j}$.

(Mathai and Provost, 1992) It is known the characteristic function of $f_{\Delta V_\gamma}$ under the assumption that ΔS follows a normal distribution.
Table: Bernoulli SLH. Reference prices by Monte Carlo.

<table>
<thead>
<tr>
<th>Holding Period</th>
<th>Prob - case 1</th>
<th>Prob - case 2</th>
<th>Prob - case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.25</td>
<td>0.5</td>
<td>0.75</td>
</tr>
<tr>
<td>30</td>
<td>0.75</td>
<td>0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>VaR</td>
<td>3.0430</td>
<td>3.0418</td>
<td>3.0364</td>
</tr>
<tr>
<td>ES</td>
<td>3.0436</td>
<td>3.0432</td>
<td>3.0414</td>
</tr>
</tbody>
</table>

Risk measures log10-errors

![Graph showing VaR and ES errors for different holding periods and probabilities](image-url)
Conclusions
Conclusions

- SWIFT method has been presented.
- SWIFT method has been used to compute VaR and ES.
- The holding period in VaR and ES has been considered stochastic to reflect the liquidity risk.
- We exhibited the convergence of the method by means of some examples.
Thank you! 😊😊😊