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What’s a shifted linear system?

Definition

Shifted linear systems are of the form

(A− ωk I )xk = b,

where {ωk}Nk=1 ∈ C are a sequence of (many) shifts.

For the simultaneous solution, Krylov methods are well-suited
because of the shift-invariance property:

Km(A,b) ≡ span{b,Ab, ...,Am−1b} = Km(A− ωI ,b).

“Proof”(shift-invariance)

For m = 2: K2(A,b) = span{b,Ab}
K2(A− ωI ,b) = span{b,Ab− ωb} = span{b,Ab}
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Some (semi) open research questions...

(A− ωk I )xk = b

1 Can we allow multiple right-hand sides?

2 Which preconditioners preserve shift-invariance?

3 Can we apply restarting and nested algorithms?

4 Can we benefit from (spectral) deflation?

5 What if (A− ωkM)xk = b?

6 Where do shifted systems occur in practice?
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Multi-shift GMRES

After m steps of Arnoldi, we have,

AVm = Vm+1Hm,

and the approximate solution yields:

xm ≈ Vmym, where ym = argmin
y∈Cm

‖Hmy − ‖b‖e1‖ .

For shifted systems, we get

(A− ωI )Vm = Vm+1(Hm − ωIm),

and, therefore,

x
(ω)
m ≈ Vmy

(ω)
m , where y

(ω)
m = argmin

y∈Cm

∥∥∥H
(ω)
m y − ‖b‖e1

∥∥∥ .
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Preconditioning is a problem

Main disadvantage:

Preconditioners are in general not easy to apply. For

(A− ωI )P−1ω y(ω) = b, Pωx(ω) = y(ω)

it does not hold:

Km(AP−1,b) 6= Km(AP−1ω − ωP−1ω ,b).

However, there are ways...

Reference
B. Jegerlehner, Krylov space solvers for shifted linear systems. Published
online arXiv:hep-lat/9612014, 1996.
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Preconditioning is a problem
... or has been a problem ?

Short historical overview:

2002 Shift-and-invert preconditioner:

P = (A− τ I ), τ ≈ {ω1, ..., ωN}

2007 Many shift-and-invert preconditioners:

Pj = (A− τj I )

2013 Polynomial preconditioners:

pn(A) ≈ A−1, pωn (A) ≈ (A− ωI )−1

2014 Nested Krylov methods
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Nested multi-shift Krylov methods

Methodology:

Martin knows: Polynomial preconditioners exist

Question: Can we use a Krylov polynomial?

Nested multi-shift Krylov methods:

Use an inner multi-shift Krylov method as preconditioner.

For inner method, require collinear residuals [r
(ω)
j = γrj ].

This is the case for:
I multi-shift GMRES [1998]
I multi-shift FOM [2003]
I multi-shift BiCG [2003]
I multi-shift IDR(s) [new!]

Using γ, we can preserve the shift-invariance in the outer
Krylov iteration.
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Nested multi-shift Krylov methods

Inner-outer iteration:

ms FOM ms FGMRES

j = j + 1

early truncation

coll. residuals

All details can be found in,

Reference
M. Baumann and M.B. van Gijzen. Nested Krylov methods for shifted
linear systems. SISC Copper Mountain Special Section 2014 [Accepted].
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Multi-shift FOM as inner method

Classical result: In FOM, the residuals are

rj = b− Axj = ... = −hj+1,je
T
j yjvj+1.

Thus, for the shifted residuals it holds:

r
(ω)
j = b− (A− ωI )x(ω)j = ... = −h(ω)j+1,je

T
j y

(ω)
j vj+1,

which gives γ = y
(ω)
j /yj .

Reference
V. Simoncini, Restarted full orthogonalization method for shifted linear
systems. BIT Numerical Mathematics, 43 (2003).
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Flexible multi-shift GMRES as outer method

Use flexible GMRES in the outer loop,

(A− ωI )V̂m = Vm+1H
(ω)
m ,

where one column yields

(A− ωI )P(ω)−1j vj︸ ︷︷ ︸
inner loop

= Vm+1h
(ω)
j , 1 ≤ j ≤ m.

The “inner loop” is the truncated solution of (A− ωI ) with
right-hand side vj using msFOM.
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Flexible multi-shift GMRES

The inner residuals are:

r
(ω)
j = vj − (A− ωI )P(ω)−1j vj ,

rj = vj − AP−1j vj ,

Imposing r
(ω)
j = γrj yields:

(A− ωI )P(ω)−1j vj = γAP−1j vj − (γ − 1)vj (∗)

Note that the right-hand side in (∗) is a preconditioned shifted
system!
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Flexible multi-shift GMRES

Altogether,

(A− ωI )P(ω)−1j vj = Vm+1h
(ω)
j

γAP−1j vj − (γ − 1)vj = Vm+1h
(ω)
j

γVm+1hj − Vm+1 (γ − 1) ej = Vm+1h
(ω)
j

Vm+1

(
γhj − (γ − 1) ej

)
= Vm+1h

(ω)
j

which yields:

H
(ω)
m = (Hm − Im) Γm + Im,

with Γm := diag(γ1, ..., γm).
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Geophysical applications
The model

The time-harmonic elastic wave equation

For many (angular) frequencies ωk , we solve

−ω2
kρ(x)û−∇ · σ(û, cp, cs) = ŝ, x ∈ Ω ⊂ R2,3,

together with absorbing or reflecting boundary conditions.

Inverse (discrete) Fourier transform:

u(x, t) =
∑
k

û(x, ωk)e iωk t
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Geophysical applications
Discretization

The discretized time-harmonic elastic wave equation is
quadratic in ωk :

(K + iωkC − ω2
kM)û = ŝ,

which can be re-arranged as,[(
iM−1C M−1K

I 0

)
− ωk

(
I 0
0 I

)](
ωk û
û

)
=

(
M−1ŝ

0

)
.

The latter is of the form:

(A− ωk I )xk = b, k = 1, ...,N.
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û
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A first example - The setting

Test case from literature:

Ω = [0, 1]× [0, 1]

h = 0.01 implying
n = 10.201 grid points

system size:
4n = 40.804

N = 6 frequencies

point source at center

Reference

T. Airaksinen, A. Pennanen, and J. Toivanen, A damping
preconditioner for time-harmonic wave equations in fluid and elastic
material. Journal of Computational Physics, 2009.
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A first example - Convergence behavior (1/2)

Preconditioned multi-shift GMRES:
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multi−shift GMRES convergence

 

 

f = 5,000
f = 10,000
f = 15,000
f = 20,000
f = 25,000
f = 30,000

We observe:

simultaneous
solve

CPU time:
17.71s
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A first example - Convergence behavior (2/2)

Preconditioned nested FOM-FGMRES:
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Outer msGMRES convergence

f = 5,000
f = 10,000
f = 15,000
f = 20,000
f = 25,000
f = 30,000

We observe:

30 inner iterations

truncate when inner
residual norm ∼ 0.1

very few outer
iterations

CPU time: 9.62s
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Summary

3 Nested Krylov methods for Ax = b are widely used
↪→ extension to shifted linear systems is possible

3 Multiple combinations of inner-outer methods possible,
e.g. FOM-FGMRES, IDR-FQMRIDR, ...

3 The shift-and-invert preconditioner (or the polynomial
preconditioner) can be applied on top

? At the moment: Multiple right-hand sides (with
K. Soodhalter, U Linz)
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Thank you for your attention!
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