Rational Least Squares Fitting using Krylov Spaces

Mario Berljafa School of Mathematics The University of Manchester

http://www.maths.manchester.ac.uk/~berljafa/

Joint work with Stefan Güttel.

Student Krylov Day 2 February 2015

Rational least squares fitting

Given the data $(\lambda_j, f_j)_{j=1}^N$ find a rational function $r_m = \frac{p_m}{q_m}$ such that $\sum_{j=1}^N |f_j - r_m(\lambda_j)|^2 \to \min.$

- given sampling frequencies
- $f_j = f(\lambda_j)$
 - available transfer function measurements

Rational least squares fitting

Given the data $(\lambda_j, f_j)_{j=1}^N$ find a rational function $r_m = \frac{p_m}{q_m}$ such that $\sum_{j=1}^N |f_j - r_m(\lambda_j)|^2 \to \min.$

Example:

 $[\lambda_1,\ldots,\lambda_N]$

- given sampling frequencies
- $f_j = f(\lambda_j)$
 - available transfer function measurements

•
$$A = \operatorname{diag}(\lambda_j)$$

• $F = \operatorname{diag}(f_j) = f(A)$
• $\mathbf{b} = \begin{bmatrix} 1, \dots, 1 \end{bmatrix}^T$

$$\sum_{j=1}^{N} |f_j - r_m(\lambda_j)|^2 = \|f(A)\mathbf{b} - \underbrace{r_m(A)\mathbf{b}}_{\in \mathcal{Q}_{m+1}(A,\mathbf{b})}\|_2^2$$

Outline

Rational Krylov spaces

- Rational Arnoldi decomposition
- Pole reallocation

2 Rational least squares approximation

- RKFIT
- Numerical experiments
- A Rational Krylov Toolbox for MATLAB

3 Summary

Outline

Rational Krylov spaces

- Rational Arnoldi decomposition
- Pole reallocation

2 Rational least squares approximation

- RKFIT
- Numerical experiments
- A Rational Krylov Toolbox for MATLAB

3 Summary

Rational Krylov spaces

• Throughout the talk $A \in \mathbb{C}^{N \times N}$, $\mathbf{v} \in \mathbb{C}^{N}$ and $q_m \in \mathcal{P}_m$.

Rational Krylov spaces

- Throughout the talk $A \in \mathbb{C}^{N \times N}$, $\mathbf{v} \in \mathbb{C}^N$ and $q_m \in \mathcal{P}_m$.
- Rational Krylov space

$$\mathcal{Q}_{m+1}(A, \mathbf{v}, q_m) := q_m(A)^{-1} \mathcal{K}_{m+1}(A, \mathbf{v}).$$

- $\mathcal{R}V_{m+1} = \mathcal{Q}_{m+1}(A, \mathbf{v}, q_m)$
- $(\underline{H_m}, \underline{K_m})$ unreduced upper-Hessenberg $(m + 1) \times m$ pencil and such that $\{h_{j+1,j}/k_{j+1,j}\}_{j=1}^m$ are the roots of q_m , i.e., the poles

$$\mathcal{Q}_{m+1}(A,\mathbf{v},q_m)=\mathcal{Q}_{m+1}(A,\breve{q}_m(A)q_m(A)^{-1}\mathbf{v},\breve{q}_m).$$

$$\mathcal{Q}_{m+1}(A,\mathbf{v},q_m)=\mathcal{Q}_{m+1}(A,\breve{q}_m(A)q_m(A)^{-1}\mathbf{v},\breve{q}_m).$$

$$\mathcal{Q}_{m+1}(A,\mathbf{v},q_m)=\mathcal{Q}_{m+1}(A,\breve{q}_m(A)q_m(A)^{-1}\mathbf{v},\breve{q}_m).$$

$$\mathcal{Q}_{m+1}(A,\mathbf{v},q_m) = \mathcal{Q}_{m+1}(A,\breve{q}_m(A)q_m(A)^{-1}\mathbf{v},\breve{q}_m).$$

$$\mathcal{Q}_{m+1}(A,\mathbf{v},q_m) = \mathcal{Q}_{m+1}(A,\breve{q}_m(A)q_m(A)^{-1}\mathbf{v},\breve{q}_m).$$

$$\mathcal{Q}_{m+1}(A,\mathbf{v},q_m)=\mathcal{Q}_{m+1}(A,\breve{q}_m(A)q_m(A)^{-1}\mathbf{v},\breve{q}_m).$$

$$\mathcal{Q}_{m+1}(A,\mathbf{v},q_m)=\mathcal{Q}_{m+1}(A,\breve{q}_m(A)q_m(A)^{-1}\mathbf{v},\breve{q}_m).$$

Rational Krylov spaces

- Rational Arnoldi decomposition
- Pole reallocation

2 Rational least squares approximation

- RKFIT
- Numerical experiments
- A Rational Krylov Toolbox for MATLAB

3 Summary

Given

- $\{A,F\} \subset \mathbb{C}^{N \times N}$, and a
- unit 2-norm vector $\mathbf{v} \in \mathbb{C}^N$,

we consider the following rational least squares problem.

Find a rational function
$$r_m = \frac{p_m}{q_m}$$
 of type (m, m) such that
 $\|F\mathbf{v} - r_m(A)\mathbf{v}\|_2^2 \to \min.$

Take initial guess q_m and iterate the following.

Take initial guess q_m and iterate the following.

• Compute orthonormal basis V_{m+1} for $Q_{m+1} = Q_{m+1}(A, \mathbf{v}, q_m)$.

Take initial guess q_m and iterate the following.

- Compute orthonormal basis V_{m+1} for $Q_{m+1} = Q_{m+1}(A, \mathbf{v}, q_m)$.
- Solve the following linear problem.

Find $\breve{v} \in \mathcal{Q}_{m+1}$ s. t. $F\breve{v}$ is best approximated by an element of \mathcal{Q}_{m+1} .

$$\mathbf{\breve{v}} = \underset{\substack{\mathbf{y} = V_{m+1} \mathbf{c} \\ \|\mathbf{y}\|_2 = 1}}{\operatorname{argmin}} \| (I - V_{m+1} V_{m+1}^*) F \mathbf{y} \|_2$$

Take initial guess q_m and iterate the following.

- Compute orthonormal basis V_{m+1} for $Q_{m+1} = Q_{m+1}(A, \mathbf{v}, q_m)$.
- Solve the following linear problem.

Find $\breve{v} \in \mathcal{Q}_{m+1}$ s. t. $F\breve{v}$ is best approximated by an element of \mathcal{Q}_{m+1} .

$$\mathbf{\breve{v}} = \underset{\substack{\mathbf{y} = V_{m+1} \mathbf{c} \\ \|\mathbf{y}\|_2 = 1}}{\operatorname{argmin}} \| (I - V_{m+1} V_{m+1}^*) F \mathbf{y} \|_2$$

Compute the SVD of $FV_{m+1} - V_{m+1} (V_{m+1}^* FV_{m+1})$.

Take initial guess q_m and iterate the following.

- **Q** Compute orthonormal basis V_{m+1} for $Q_{m+1} = Q_{m+1}(A, \mathbf{v}, q_m)$.
- Solve the following linear problem.

Find $\breve{v} \in \mathcal{Q}_{m+1}$ s. t. $F\breve{v}$ is best approximated by an element of \mathcal{Q}_{m+1} .

$$\mathbf{\breve{v}} = \underset{\substack{\mathbf{y} = V_{m+1}\mathbf{c} \\ \|\mathbf{y}\|_2 = 1}}{\operatorname{argmin}} \|(I - V_{m+1}V_{m+1}^*)F\mathbf{y}\|_2$$

Compute the SVD of $FV_{m+1} - V_{m+1} (V_{m+1}^* FV_{m+1})$.

Set $q_m := \breve{q}_m$ where \breve{q}_m is such that $\breve{\mathbf{v}} = \breve{q}_m(A)q_m(A)^{-1}\mathbf{v}$.

Take initial guess q_m and iterate the following.

- Compute orthonormal basis V_{m+1} for $Q_{m+1} = Q_{m+1}(A, \mathbf{v}, q_m)$.
- Solve the following linear problem.

Find $\breve{v} \in \mathcal{Q}_{m+1}$ s. t. $F\breve{v}$ is best approximated by an element of \mathcal{Q}_{m+1} .

$$\breve{\mathbf{v}} = \underset{\substack{\mathbf{y} = V_{m+1}\mathbf{c} \\ \|\mathbf{y}\|_2 = 1}}{\operatorname{argmin}} \|(I - V_{m+1}V_{m+1}^*)F\mathbf{y}\|_2$$

Compute the SVD of $FV_{m+1} - V_{m+1} (V_{m+1}^* FV_{m+1})$. Set $q_m := \breve{q}_m$ where \breve{q}_m is such that $\breve{\mathbf{v}} = \breve{q}_m (A)q_m (A)^{-1}\mathbf{v}$.

Approximate solution r_m is given implicitly as $r_m(A)\mathbf{v} = V_{m+1}V_{m+1}^*F\mathbf{v}$, where $\mathcal{R}V_{m+1} = \mathcal{Q}_{m+1}(A, \mathbf{v}, q_m)$.

Fitting an artificial frequency response

• f is a (19, 18) rational function, $f(\overline{z}) = \overline{f(z)}$ • N = 200

Exponential of a nonnormal matrix, $\|\exp(A)\mathbf{v} - r_m(A)\mathbf{v}\|_2^2 \rightarrow \min$

M\crN/

Mario Berljafa

A Rational Krylov Toolbox for MATLAB

```
N = 100;
A = -5*gallery('grcar',N,3);
v = ones(N,1);
F = expm(A); exact = F*v;
poles = inf*ones(1, 16);
for iter = 1:3
 [poles,ratfun,misfit] = rkfit(F,A,v,poles,'real');
rel_misfit = misfit/norm(exact);
disp(exprintf(liter %d) %d) [iter product);
```

disp(sprintf('iter %d: %e',[iter rel_misfit]))
end

```
iter 1: 1.814195e-11
```

iter 2: 6.863362e-13

```
iter 3: 6.843369e-13
```

Outline

Rational Krylov spaces

- Rational Arnoldi decomposition
- Pole reallocation

Rational least squares approximation RKFIT

- Numerical experiments
- A Rational Krylov Toolbox for MATLAB

3 Summary

Summary

- Introduced RKFIT. Based on
 - discrete orthogonal rational functions, and
 - pole reallocation within $Q_{m+1}(A, \mathbf{v}, q_m)$.
- Observed better numerical stability than VFIT.

Summary

- Introduced RKFIT. Based on
 - discrete orthogonal rational functions, and
 - pole reallocation within $Q_{m+1}(A, \mathbf{v}, q_m)$.
- Observed better numerical stability than VFIT.

References

- M. Berljafa and S. Güttel, *A Rational Krylov Toolbox for MATLAB*. The University of Manchester, MIMS EPrint 2014.56. Available at http://guettel.com/rktoolbox/.

M. Berljafa and S. Güttel, *Generalized rational Krylov decompositions with an application to rational approximation.* The University of Manchester, MIMS EPrint 2014.59.

B. Gustavsen and A. Semlyen, *Rational approximation of frequency domain responses by vector fitting*, IEEE Trans. Power Del., 14 (1999), pp. 1052–1061.

