Student Krylov Day 2015 SIAM Student Chapter at TU Delft Netherlands 2nd February 2015

Preconditioning of Large-Scale Saddle Point Systems for Coupled Flow Problems

Eberhard Bänsch¹ Peter Benner² Jens Saak² Martin Stoll² Heiko K. Weichelt²

¹Department of Applied Mathematics III Friedrich-Alexander-Universität Erlangen-Nürnberg

²Research group Computational Methods in Systems and Control Theory Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg

Friedrich-Alexander-Universität naen-Nürnbera

1/13

Overview

Origin of Saddle Point Systems

3 Iterative Solver for Saddle Point Systems

Conclusion

Motivation ●○	Origin of Saddle Point Systems	Iterative Solver for Saddle Point Systems	Conclusio OO
Motiv	ation		Q
Model Pro	blems		
Flow Mo	dels		
Stoke	s Equations	Navier-Stokes Equations	
-	$\frac{\partial \vec{v}}{\partial t} - \nu \Delta \vec{v} + \nabla p = \vec{f}$	$\frac{\partial \vec{v}}{\partial t} - \frac{1}{Re} \Delta \vec{v} + (\vec{v} \cdot \nabla) \vec{v} + \nabla p$	$=\vec{f}$
	$\operatorname{div} \vec{v} = 0$	div v	= 0
defin	ned on $(0,\infty) imes \Omega$, $\Omega\subset \mathbb{R}^2$ bo	bunded and "smooth enough" ${\sf \Gamma}=\partial$	Ω
● + b	oundary and initial conditions		

- models describe incompressible, instationary flow
- viscosity $\nu \in \mathbb{R}^+$, (NSE: Reynolds number $\operatorname{Re} = \frac{v_{ch} \cdot d_{ch}}{\nu} \in \mathbb{R}^+$)
- initial boundary value problem with additional algebraic constraints

Notivation ●○			ns Concl OO
Motiva	ation		(
Model Pro	blems		
Flow N	lodels		
Stoke	s Equations	Navier-Stokes Equations	
	$\frac{\partial \vec{v}}{\partial t} - \nu \Delta \vec{v} + \nabla p = \vec{f}$	$\frac{\partial \vec{v}}{\partial t} - \frac{1}{Re} \Delta \vec{v} + (\vec{v} \cdot \nabla) \vec{v}$	$\vec{v} + abla p = \vec{f}$
	$\operatorname{div} \vec{v} = 0$		div $\vec{v} = 0$

a

Motivation ●○	Origin of Saddle Point Systems	Iterative Solver for Saddle Point Systems	Concli 00
Motiva	ation		(
Model Prob	lems		
Flow M	lodels		
Stokes	Equations	Navier-Stokes Equations	
$\frac{\partial}{\partial t}$	$\frac{\partial \vec{v}}{\partial t} - \nu \Delta \vec{v} + \nabla p = \vec{f}$	$\frac{\partial \vec{v}}{\partial t} - \frac{1}{\text{Re}} \Delta \vec{v} + (\vec{v} \cdot \nabla) \vec{v} + \nabla \mu$	$o = \vec{f}$
	div $\vec{v} = 0$	divi	$\vec{i} = 0$

Diffusion-Convection Models

Concentration Equation

$$\frac{\partial c}{\partial t} - \frac{1}{\operatorname{\mathsf{Re}}\operatorname{\mathsf{Sc}}}\Delta c + (\vec{v}\cdot\nabla)c = 0$$

$$\frac{\partial \vartheta}{\partial t} - \frac{1}{\operatorname{Re}\operatorname{Pr}}\Delta\vartheta + (\vec{v}\cdot\nabla)\vartheta = 0$$

• defined on $(0,\infty) \times \Omega$, $\Omega \subset \mathbb{R}^2$ bounded and "smooth enough" $\Gamma = \partial \Omega$

• + boundary and initial conditions

- models describe diffusion and convection process
- \bullet Schmidt number $\mathsf{Sc} \in \mathbb{R}^+,$ Prandtl number $\mathsf{Pr} \in \mathbb{R}^+$

• Scenario 1: Feedback stabilization of flow field around stationary trajectory in "von Kármán Vortex Street".

• Scenario 2: Feedback stabilization of coupled flow and diffusion-convection field in a reactor model.

Motivation

Basic Ideas of Feedback Stabilization

- $\,\hookrightarrow\,$ Stabilize flow profiles.
- \hookrightarrow Attenuate external perturbations.
- $\,\hookrightarrow\,$ Influence flow via boundary conditions.

Basic Ideas of Feedback Stabilization

- $\, \hookrightarrow \, \, \text{Stabilize flow profiles}.$
- $\,\hookrightarrow\,$ Attenuate external perturbations.
- $\,\hookrightarrow\,$ Influence flow via boundary conditions.
- Riccati-based feedback stabilization with boundary control input.
 - \hookrightarrow Use linear quadratic regulator (LQR) approach.
 - \hookrightarrow Influence the model via **boundary control**.
 - \hookrightarrow Stabilize the flow around a desired flow profile (stationary trajectory) that is used as linearization point.

Basic Ideas of Feedback Stabilization

- $\, \hookrightarrow \, \, \text{Stabilize flow profiles}.$
- $\,\hookrightarrow\,$ Attenuate external perturbations.
- $\,\hookrightarrow\,$ Influence flow via boundary conditions.
- Riccati-based feedback stabilization with boundary control input.
 - \hookrightarrow Use linear quadratic regulator (LQR) approach.
 - $\,\hookrightarrow\,$ Influence the model via boundary control.
 - Stabilize the flow around a desired flow profile (stationary trajectory) that is used as linearization point.
- Analytical approach by [RAYMOND since 2005].
 - $\,\hookrightarrow\,$ Uses Leray projector to project onto the correct subspace.
 - $\hookrightarrow \text{ Extended to finite dimensional controllers [Raymond/Thevenet '10]}.$

Basic Ideas of Feedback Stabilization

- $\, \hookrightarrow \, \, \text{Stabilize flow profiles}.$
- $\,\hookrightarrow\,$ Attenuate external perturbations.
- \hookrightarrow Influence flow via boundary conditions.
- Riccati-based feedback stabilization with boundary control input.
 - \hookrightarrow Use linear quadratic regulator (LQR) approach.
 - \hookrightarrow Influence the model via **boundary control**.
 - Stabilize the flow around a desired flow profile (stationary trajectory) that is used as linearization point.
- Analytical approach by [RAYMOND since 2005].
 - $\,\hookrightarrow\,$ Uses Leray projector to project onto the correct subspace.
 - $\hookrightarrow \mbox{ Extended to finite dimensional controllers [Raymond/Thevenet '10]}.$
- Ideas for numerical treatment based on [BÄNSCH/BENNER '10].
 - $\,\hookrightarrow\,$ Consider linearized Navier-Stokes equations for 2D.
 - $\hookrightarrow \ \ \mathsf{Discrete} \ \ \mathsf{projection} \ \ \mathsf{idea} \ \ \mathsf{by} \ \ [\mathrm{Heinkenschloss/Sorensen/Sun}\ \ `08].$
 - \hookrightarrow Use *Newton-ADI* method to compute **optimal control**.

Finite Element Discretization

• Applying a standard finite element discretization to the linearized flow/coupled flow problems yields

$$M\frac{d}{dt}\mathbf{x}(t) = A\mathbf{x}(t) + G\mathbf{p}(t) + \mathbf{f}(t),$$
$$\mathbf{0} = G^{T}\mathbf{v}(t).$$

Scenario 1Scenario 2
$$\mathbf{x}(t) = \mathbf{v}(t)$$
 $\mathbf{x}(t) = \begin{bmatrix} \mathbf{v}(t) \\ \mathbf{c}(t) \end{bmatrix}$ $A = A_v$ $A = \begin{bmatrix} A_v & 0 \\ -R & A_c \end{bmatrix}$

Finite Element Discretization

 Applying a standard finite element discretization to the linearized flow/coupled flow problems yields

$$M\frac{d}{dt}\mathbf{x}(t) = A\mathbf{x}(t) + G\mathbf{p}(t) + \mathbf{f}(t),$$

$$\mathbf{0} = G^{T}\mathbf{v}(t),$$

$$\mathbf{y}(t) = C\mathbf{x}(t).$$

Scenario 1Scenario 2
$$\mathbf{x}(t) = \mathbf{v}(t)$$
 $\mathbf{x}(t) = \begin{bmatrix} \mathbf{v}(t) \\ \mathbf{c}(t) \end{bmatrix}$ $A = A_v$ $A = \begin{bmatrix} A_v & 0 \\ -R & A_c \end{bmatrix}$

Finite Element Discretization

• Applying a standard finite element discretization to the linearized flow/coupled flow problems yields

$$M\frac{d}{dt}\mathbf{x}(t) = A\mathbf{x}(t) + G\mathbf{p}(t) + B\mathbf{u}(t),$$
$$\mathbf{0} = G^{T}\mathbf{v}(t),$$
$$\mathbf{y}(t) = C\mathbf{x}(t).$$

Scenario 1Scenario 2
$$\mathbf{x}(t) = \mathbf{v}(t)$$
 $\mathbf{x}(t) = \begin{bmatrix} \mathbf{v}(t) \\ \mathbf{c}(t) \end{bmatrix}$ $A = A_v$ $A = \begin{bmatrix} A_v & 0 \\ -R & A_c \end{bmatrix}$

Ø

Origin of Saddle Point Systems

Finite Element Discretization

 Applying a standard finite element discretization to the linearized flow/coupled flow problems yields

$$\frac{M\frac{d}{dt}\mathbf{x}(t) = A\mathbf{x}(t) + G\mathbf{p}(t)}{\mathbf{0} = G^{T}\mathbf{v}(t),}$$
$$\mathbf{y}(t) = C\mathbf{x}(t).$$

Properties

- Differential algebraic system (DAE) of D-index 2 (if \tilde{G} has full rank).
- Matrix pencil:

$$\left(\begin{bmatrix} A & \tilde{G} \\ \tilde{G}^T & 0 \end{bmatrix}, \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} \right).$$

Scenario 1Scenario 2
$$\mathbf{x}(t) = \mathbf{v}(t)$$
 $\mathbf{x}(t) = \begin{bmatrix} \mathbf{v}(t) \\ \mathbf{c}(t) \end{bmatrix}$ $A = A_v$ $A = \begin{bmatrix} A_v & 0 \\ -R & A_c \end{bmatrix}$ $\tilde{G} = G$ $\tilde{G} = \begin{bmatrix} G \\ 0 \end{bmatrix}$

Finite Element Discretization

• Applying a standard finite element discretization to the linearized flow/coupled flow problems yields

$$M\frac{d}{dt}\mathbf{x}(t) = A\mathbf{x}(t) + G\mathbf{p}(t) + B\mathbf{u}(t),$$
$$\mathbf{0} = G^{T}\mathbf{v}(t),$$
$$\mathbf{y}(t) = C\mathbf{x}(t).$$

Properties

- Differential algebraic system (DAE) of D-index 2 (if \tilde{G} has full rank).
- Matrix pencil:

$$\left(\begin{bmatrix} A & \tilde{G} \\ \tilde{G}^{T} & 0 \end{bmatrix}, \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} \right).$$

• Descriptor system with multiple inputs and outputs (MIMO).

Finite Element Discretization

 Applying a standard finite element discretization to the linearized flow/coupled flow problems yields

$$M\frac{d}{dt}\mathbf{x}(t) = A\mathbf{x}(t) + G\mathbf{p}(t) + B\mathbf{u}(t),$$
$$\mathbf{0} = G^{T}\mathbf{v}(t),$$
$$\mathbf{y}(t) = C\mathbf{x}(t).$$

Properties

- Differential algebraic system (DAE) of D-index 2 (if \tilde{G} has full rank).
- Matrix pencil:

$$\left(\begin{bmatrix} A & \tilde{G} \\ \tilde{G}^{T} & 0 \end{bmatrix}, \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} \right).$$

- Descriptor system with multiple inputs and outputs (MIMO).
- Index reduction to apply LQR approach [HEINKENSCHLOSS/SORENSEN/SUN '08].

[Benner/Saak/Stoll/W. 12]

Origin of Saddle Point Systems

LQR Approach for Projected System

Minimize

$$\mathcal{J}(\mathbf{y},\mathbf{u}) = rac{1}{2}\int_0^\infty \lambda ||\mathbf{y}||^2 + ||\mathbf{u}||^2 \; \mathrm{dt},$$

subject to

$$\mathcal{M}\frac{d}{dt}\tilde{\mathbf{x}}(t) = \mathcal{A}\tilde{\mathbf{x}}(t) + \mathcal{B}\mathbf{u}(t),$$

$$\mathbf{y}(t) = \mathcal{C}\tilde{\mathbf{x}}(t).$$
 (1)

Origin of Saddle Point Systems

LQR Approach for Projected System

Minimize

$$\mathcal{J}(\mathbf{y},\mathbf{u}) = \frac{1}{2} \int_0^\infty \lambda ||\mathbf{y}||^2 + ||\mathbf{u}||^2 \ \mathsf{dt},$$

subject to

$$\mathcal{M}\frac{d}{dt}\tilde{\mathbf{x}}(t) = \mathcal{A}\tilde{\mathbf{x}}(t) + \mathcal{B}\mathbf{u}(t),$$

$$\mathbf{y}(t) = \mathcal{C}\tilde{\mathbf{x}}(t).$$
 (1)

Riccati Based Feedback Approach

[e.g.,LOCATELLI '01]

[BENNER/SAAK/STOLL/W. 12]

- Optimal control: $\mathbf{u}(t) = -\mathcal{K}\tilde{\mathbf{x}}(t)$.
- Feedback: $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$,

where X is the solution of the generalized algebraic Riccati equation

$$\mathcal{R}(X) = \mathcal{C}^{\mathsf{T}}\mathcal{C} + \mathcal{A}^{\mathsf{T}}X\mathcal{M} + \mathcal{M}^{\mathsf{T}}X\mathcal{A} - \mathcal{M}^{\mathsf{T}}X\mathcal{B}\mathcal{B}^{\mathsf{T}}X\mathcal{M} = 0.$$

Origin of Saddle Point Systems

Iterative Solver for Saddle Point System: 0000 Conclusion 00

Origin of Saddle Point Systems

Compute feedback matrix $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$ with X solves: $\mathcal{R}(X) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T X \mathcal{M} + \mathcal{M}^T X \mathcal{A} - \mathcal{M}^T X \mathcal{B} \mathcal{B}^T X \mathcal{M} = 0$

Origin of Saddle Point Systems

Iterative Solver for Saddle Point System: 0000 Conclusion 00

Origin of Saddle Point Systems

Compute feedback matrix $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$ with X solves: $\mathcal{R}(X) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T X \mathcal{M} + \mathcal{M}^T X \mathcal{A} - \mathcal{M}^T X \mathcal{B} \mathcal{B}^T X \mathcal{M} = 0$

Step m + 1: solve Lyapunov equation $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^T X^{(m+1)} \mathcal{M} + \mathcal{M}^T X^{(m+1)} (\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^T \mathcal{W}^{(m)}$

Vewton Kleinman method

Origin of Saddle Point Systems

Iterative Solver for Saddle Point System: 0000 Conclusion 00

Origin of Saddle Point Systems

Compute feedback matrix $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$ with X solves: $\mathcal{R}(X) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T X \mathcal{M} + \mathcal{M}^T X \mathcal{A} - \mathcal{M}^T X \mathcal{B} \mathcal{B}^T X \mathcal{M} = 0$

Step m + 1: solve Lyapunov equation

 $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^{\mathsf{T}} X^{(m+1)} \mathcal{M} + \mathcal{M}^{\mathsf{T}} X^{(m+1)} (\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^{\mathsf{T}} \mathcal{W}^{(m)}$

Vewton Kleinman method

Krylov solver

Step i: solve the projected linear system $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_i\mathcal{M})^T\mathcal{V}_i = \mathcal{Y}$ (2)

Newton Kleinman method

Origin of Saddle Point Systems

Iterative Solver for Saddle Point System: 0000 Conclusion 00

Origin of Saddle Point Systems

Compute feedback matrix $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$ with X solves: $\mathcal{R}(X) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T X \mathcal{M} + \mathcal{M}^T X \mathcal{A} - \mathcal{M}^T X \mathcal{B} \mathcal{B}^T X \mathcal{M} = 0$

> Step m + 1: solve Lyapunov equation $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^T X^{(m+1)} \mathcal{M} + \mathcal{M}^T X^{(m+1)} (\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^T \mathcal{W}^{(m)}$

Newton Kleinman method

Origin of Saddle Point Systems

Iterative Solver for Saddle Point System: 0000 Conclusion 00

Origin of Saddle Point Systems

Compute feedback matrix $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$ with X solves: $\mathcal{R}(X) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T X \mathcal{M} + \mathcal{M}^T X \mathcal{A} - \mathcal{M}^T X \mathcal{B} \mathcal{B}^T X \mathcal{M} = 0$

Step m + 1: solve Lyapunov equation $(\mathcal{A} - \mathcal{BK}^{(m)})^T X^{(m+1)} \mathcal{M} + \mathcal{M}^T X^{(m+1)} (\mathcal{A} - \mathcal{BK}^{(m)}) = -(\mathcal{W}^{(m)})^T \mathcal{W}^{(m)}$

Step i: solve the projected linear system $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_i\mathcal{M})^T\mathcal{V}_i = \mathcal{Y}$ (2) Avoid explicit projection using [HEINKENSCHLOSS/SORENSEN/SUN '08]: Replace (2) and solve instead the saddle point system (SPS) $\begin{bmatrix} \mathcal{A}^T - (\mathcal{K}^{(m)})^T \mathcal{B}^T + q_i \mathcal{M}^T & \tilde{G} \\ \tilde{G}^T & 0 \end{bmatrix} \begin{bmatrix} \mathcal{V}_i \\ * \end{bmatrix} = \begin{bmatrix} Y \\ 0 \end{bmatrix}$ for different ADI shifts $q_i \in \mathbb{C}^-$ for a couple of rhs Y.

Origin of Saddle Point Systems

Iterative Solver for Saddle Point Systems

Conclusion 00

Origin of Saddle Point Systems

Compute feedback matrix $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$ with X solves: $\mathcal{R}(X) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T X \mathcal{M} + \mathcal{M}^T X \mathcal{A} - \mathcal{M}^T X \mathcal{B} \mathcal{B}^T X \mathcal{M} = 0$

> Step m + 1: solve Lyapunov equation $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^{\mathsf{T}} X^{(m+1)} \mathcal{M} + \mathcal{M}^{\mathsf{T}} X^{(m+1)} (\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^{\mathsf{T}} \mathcal{W}^{(m)}$

Step i: solve the projected linear system $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_i\mathcal{M})^T\mathcal{V}_i = \mathcal{Y}$ (2)

> Avoid explicit projection using [HEINKENSCHLOSS/SORENSEN/SUN '08]: **Replace** (2) and **solve instead** the saddle point system (SPS) (using Sherman Morrison Woodbury formula)

$$\begin{bmatrix} A^T - (K^{(m)})^T B^T + q_i M^T & \tilde{G} \\ \tilde{G}^T & 0 \end{bmatrix} \begin{bmatrix} V_i \\ * \end{bmatrix} = \begin{bmatrix} Y \\ 0 \end{bmatrix}$$
for different ADI shifts $q_i \in \mathbb{C}^-$ for a couple of rhs Y .

Max Planck Institute Mag

ow rank ADI method

Krylov solvei

Newton Kleinman method

Origin of Saddle Point Systems Nested Iteration

Compute feedback matrix $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$ with X solves: $\mathcal{R}(X) = \mathcal{C}^{\mathsf{T}}\mathcal{C} + \mathcal{A}^{\mathsf{T}}X\mathcal{M} + \mathcal{M}^{\mathsf{T}}X\mathcal{A} - \mathcal{M}^{\mathsf{T}}X\mathcal{B}\mathcal{B}^{\mathsf{T}}X\mathcal{M} = 0$

Step m + 1: solve Lyapunov equation $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^T \mathcal{X}^{(m+1)} \mathcal{M} + \mathcal{M}^T \mathcal{X}^{(m+1)} (\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^T \mathcal{W}^{(m)}$

Step i: solve the projected linear system $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_i\mathcal{M})^T\mathcal{V}_i = \mathcal{Y}$ (2) ow rank ADI method Krylov solvei

Avoid explicit projection using [HEINKENSCHLOSS/SORENSEN/SUN '08]: **Replace** (2) and **solve instead** the saddle point system (SPS) (using Sherman Morrison Woodbury formula)

 $\begin{bmatrix} A^{T} + q_{i}M^{T} & \ddot{G} \\ \tilde{G}^{T} & 0 \end{bmatrix} \begin{bmatrix} V_{i} \\ * \end{bmatrix} = \begin{bmatrix} \ddot{Y} \\ 0 \end{bmatrix}$

for different ADI shifts $q_i \in \mathbb{C}^-$ for a couple of rhs \tilde{Y} .

Newton Kleinman method

Conclusion OO

Iterative Solver for Saddle Point Systems

Preconditioned GMRES

- Use iterative methods because size becomes quite large.
- Using GMRES for non-symmetric SPS and a block-preconditioner P.
- Ideas for NSE can be adapted to coupled flow problems.

$$\mathbf{F} = egin{bmatrix} A^{ au} + q_i M^{ au} & ilde{G} \ ilde{G}^{ au} & 0 \end{bmatrix}$$

Iterative Solver for Saddle Point Systems

Preconditioned GMRES

Block-Preconditioner

- Use iterative methods because size becomes quite large.
- Using GMRES for non-symmetric SPS and a block-preconditioner P.
- Ideas for NSE can be adapted to coupled flow problems.

$$\mathbf{F} = \begin{bmatrix} F & \tilde{G} \\ \tilde{G}^T & 0 \end{bmatrix}$$

Preconditioned GMRES

Block-Preconditioner

- Use iterative methods because size becomes quite large.
- Using GMRES for non-symmetric SPS and a block-preconditioner P.
- Ideas for NSE can be adapted to coupled flow problems.

$$\mathbf{F} = \begin{bmatrix} F & \tilde{G} \\ \tilde{G}^T & 0 \end{bmatrix} \quad \Rightarrow \quad \mathbf{P} = \begin{bmatrix} P_F & 0 \\ \tilde{G}^T & -P_{SC} \end{bmatrix}$$

Block-Preconditioner

Preconditioned GMRES

[Elman/Silvester/Wathen '05]

- Use iterative methods because size becomes quite large.
- Using GMRES for non-symmetric SPS and a block-preconditioner P.
- Ideas for NSE can be adapted to coupled flow problems.

$$\mathbf{F} = \begin{bmatrix} \mathbf{F} & \tilde{\mathbf{G}} \\ \tilde{\mathbf{G}}^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \quad \Rightarrow \quad \mathbf{P} = \begin{bmatrix} \mathbf{P}_{\mathbf{F}} & \mathbf{0} \\ \tilde{\mathbf{G}}^{\mathsf{T}} & -\mathbf{P}_{SC} \end{bmatrix}$$

Using algebraic multigrid approximation of F for P_F.
 (Yvan Notay, AGMG software, documentation; http://homepages.ulb.ac.be/~ynotay/AGMG)

Preconditioned GMRES

- Use iterative methods because size becomes quite large.
- Using GMRES for non-symmetric SPS and a block-preconditioner P.
- Ideas for NSE can be adapted to coupled flow problems.

$$\mathbf{F} = \begin{bmatrix} F & \tilde{G} \\ \tilde{G}^{T} & 0 \end{bmatrix} \quad \Rightarrow \quad \mathbf{P} = \begin{bmatrix} P_F & 0 \\ \tilde{G}^{T} & -P_{SC} \end{bmatrix}$$

- Using algebraic multigrid approximation of F for P_F.
 (Yvan Notay, AGMG software, documentation; http://homepages.ulb.ac.be/~ynotay/AGMG)
- Using *least-squares commutator* (LSC) approach for Schur complement approximation *P_{SC}*. [Stoll/WATHEN '11]

Iterative Solver for Saddle Point Systems

Preconditioned GMRES

- Use iterative methods because size becomes quite large.
- Using GMRES for non-symmetric SPS and a block-preconditioner P.
- Ideas for NSE can be adapted to coupled flow problems.

$$\mathbf{F} = \begin{bmatrix} A^T + q_i M^T & \tilde{G} \\ \tilde{G}^T & 0 \end{bmatrix} \quad \Rightarrow \quad \mathbf{P} = \begin{bmatrix} P_F & 0 \\ \tilde{G}^T & -P_{SC} \end{bmatrix}$$

- Using algebraic *multigrid* approximation of *F* for *P_F*. (Yvan Notay, AGMG software, documentation; http://homepages.ulb.ac.be/~ynotay/AGMG)
- Using *least-squares commutator* (LSC) approach for Schur complement approximation *P_{SC}*. [Stoll/WATHEN '11]
- **Problems:** Preconditioner changes in every ADI step,
 - SPS has to be solved for a number of right hand sides.

$$\mathbf{F}_{NSE} = \begin{bmatrix} A_{\nu}^{T} + q_{i} M_{\nu}^{T} & G \\ G^{T} & 0 \end{bmatrix}$$

Origin of Saddle Point Systems

Iterative Solver for Saddle Point System:

Conclusion 00

Iterative Solver for Saddle Point Systems

$$\mathbf{F}_{NSE} = \begin{bmatrix} F_{\nu} & G \\ G^T & 0 \end{bmatrix}$$

Drigin of Saddle Point Systems

Iterative Solver for Saddle Point System:

Conclusion 00

Iterative Solver for Saddle Point Systems

Preconditioner for Scenario 1

$$\mathbf{F}_{NSE} = \begin{bmatrix} F_{\nu} & G \\ G^T & 0 \end{bmatrix} \quad \Rightarrow \quad \mathbf{P}_{NSE} = \begin{bmatrix} P_{F_{\nu}} & 0 \\ G^T & -P_{SC} \end{bmatrix}$$

Origin of Saddle Point Systems

Iterative Solver for Saddle Point System:

Conclusion 00

Iterative Solver for Saddle Point Systems

$$\mathbf{F}_{NSE} = \begin{bmatrix} F_{v} & G \\ G^{T} & 0 \end{bmatrix} \quad \Rightarrow \quad \mathbf{P}_{NSE} = \begin{bmatrix} P_{F_{v}} & 0 \\ G^{T} & -P_{SC} \end{bmatrix}$$

$$\mathsf{P}_{NSE} \begin{bmatrix} \mathsf{x}_{v} \\ \mathsf{x}_{b} \end{bmatrix} = \begin{bmatrix} \mathsf{b}_{v} \\ \mathsf{b}_{p} \end{bmatrix}$$

Drigin of Saddle Point Systems

Iterative Solver for Saddle Point System:

Conclusion 00

Iterative Solver for Saddle Point Systems

$$\mathbf{F}_{NSE} = \begin{bmatrix} F_{v} & G \\ G^{T} & 0 \end{bmatrix} \quad \Rightarrow \quad \mathbf{P}_{NSE} = \begin{bmatrix} P_{F_{v}} & 0 \\ G^{T} & -P_{SC} \end{bmatrix}$$

To apply preconditioner \mathbf{P}_{NSE} solve:

$$\mathbf{P}_{NSE} \begin{bmatrix} \mathbf{x}_{\nu} \\ \mathbf{x}_{b} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\nu} \\ \mathbf{b}_{p} \end{bmatrix}$$

Precondition steps Step I: $\mathbf{x}_{v} = P_{F_{v}}^{-1}\mathbf{b}_{v}$ Step II: $\mathbf{x}_{p} = P_{SC}^{-1}(G^{T}\mathbf{x}_{v} - \mathbf{b}_{p})$

Drigin of Saddle Point Systems

Iterative Solver for Saddle Point System:

Conclusion 00

Iterative Solver for Saddle Point Systems

$$\mathbf{F}_{NSE} = \begin{bmatrix} F_{v} & G \\ G^{T} & 0 \end{bmatrix} \quad \Rightarrow \quad \mathbf{P}_{NSE} = \begin{bmatrix} P_{F_{v}} & 0 \\ G^{T} & -P_{SC} \end{bmatrix}$$

To apply preconditioner \mathbf{P}_{NSE} solve:

$$\mathbf{P}_{NSE} \begin{bmatrix} \mathbf{x}_{\nu} \\ \mathbf{x}_{b} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\nu} \\ \mathbf{b}_{p} \end{bmatrix}$$

Precondition steps Step I: $\mathbf{x}_{v} = P_{F_{v}}^{-1}\mathbf{b}_{v}$ Step II: $\mathbf{x}_{p} = P_{SC}^{-1}(G^{T}\mathbf{x}_{v} - \mathbf{b}_{p})$ LSC: $P_{SC}^{-1} \approx M_{p}^{-1}F_{p}S_{p}^{-1}$

Drigin of Saddle Point Systems

Iterative Solver for Saddle Point System:

Conclusion 00

Iterative Solver for Saddle Point Systems

$$\mathbf{F}_{NSE} = \begin{bmatrix} F_{v} & G \\ G^{T} & 0 \end{bmatrix} \quad \Rightarrow \quad \mathbf{P}_{NSE} = \begin{bmatrix} P_{F_{v}} & 0 \\ G^{T} & -P_{SC} \end{bmatrix}$$

To apply preconditioner \mathbf{P}_{NSE} solve:

$$\mathbf{P}_{NSE} \begin{bmatrix} \mathbf{x}_{\nu} \\ \mathbf{x}_{b} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\nu} \\ \mathbf{b}_{p} \end{bmatrix}$$

Precondition steps Step I: $\mathbf{x}_{v} = P_{F_{v}}^{-1}\mathbf{b}_{v}$ Step II: $\mathbf{x}_{p} = P_{SC}^{-1}(G^{T}\mathbf{x}_{v} - \mathbf{b}_{p})$ LSC: $P_{SC}^{-1} \approx M_{p}^{-1}F_{p}S_{p}^{-1}$

Implemented Solvers

• algebraic *multigrid* approximation (Yvan Notay, AGMG software + documentation)

Drigin of Saddle Point Systems

Iterative Solver for Saddle Point System:

Conclusion 00

Iterative Solver for Saddle Point Systems

$$\mathbf{F}_{NSE} = \begin{bmatrix} F_{v} & G \\ G^{T} & 0 \end{bmatrix} \quad \Rightarrow \quad \mathbf{P}_{NSE} = \begin{bmatrix} P_{F_{v}} & 0 \\ G^{T} & -P_{SC} \end{bmatrix}$$

To apply preconditioner \mathbf{P}_{NSE} solve:

$$\mathsf{P}_{NSE} \begin{bmatrix} \mathsf{x}_{v} \\ \mathsf{x}_{b} \end{bmatrix} = \begin{bmatrix} \mathsf{b}_{v} \\ \mathsf{b}_{p} \end{bmatrix}$$

Precondition steps Step I: $\mathbf{x}_{v} = P_{F_{v}}^{-1}\mathbf{b}_{v}$ Step II: $\mathbf{x}_{p} = P_{SC}^{-1} (G^{T}\mathbf{x}_{v} - \mathbf{b}_{p})$ LSC: $P_{SC}^{-1} \approx M_{p}^{-1}F_{p}S_{p}^{-1}$

Implemented Solvers

- algebraic *multigrid* approximation (Yvan Notay, AGMG software + documentation)
- Chebyshev semi-iteration [STOLL/WATHEN '11]

Iterative Solver for Saddle Point Systems

$$\mathbf{F}_{DCE} = \begin{bmatrix} A_{v}^{T} + q_{i}M_{v} & -R^{T} & G \\ 0 & A_{c}^{T} + q_{i}M_{c} & 0 \\ G^{T} & 0 & 0 \end{bmatrix}$$

Conclusion 00

Iterative Solver for Saddle Point Systems

$$\mathbf{F}_{DCE} = \begin{bmatrix} F_v & -R^T & G\\ 0 & F_c & 0\\ G^T & 0 & 0 \end{bmatrix}$$

$$\mathbf{F}_{DCE} = \begin{bmatrix} F_{v} & -R^{T} & G \\ 0 & F_{c} & 0 \\ G^{T} & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{P}_{DCE} = \begin{bmatrix} P_{F_{v}} & -R^{T} & 0 \\ 0 & P_{F_{c}} & 0 \\ G^{T} & 0 & -P_{SC} \end{bmatrix}$$

$$\mathbf{F}_{DCE} = \begin{bmatrix} F_{v} & -R^{T} & G \\ 0 & F_{c} & 0 \\ G^{T} & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{P}_{DCE} = \begin{bmatrix} P_{F_{v}} & -R^{T} & 0 \\ 0 & P_{F_{c}} & 0 \\ G^{T} & 0 & -P_{SC} \end{bmatrix}$$

$$\mathbf{P}_{DCE} \begin{bmatrix} \mathbf{x}_{v} \\ \mathbf{x}_{c} \\ \mathbf{x}_{p} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{v} \\ \mathbf{b}_{c} \\ \mathbf{b}_{p} \end{bmatrix}$$

$$\mathbf{F}_{DCE} = \begin{bmatrix} F_{v} & -R^{T} & G \\ 0 & F_{c} & 0 \\ G^{T} & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{P}_{DCE} = \begin{bmatrix} P_{F_{v}} & -R^{T} & 0 \\ 0 & P_{F_{c}} & 0 \\ G^{T} & 0 & -P_{SC} \end{bmatrix}$$

$$\mathbf{P}_{DCE}\begin{bmatrix}\mathbf{x}_{v}\\\mathbf{x}_{c}\\\mathbf{x}_{p}\end{bmatrix} = \begin{bmatrix}\mathbf{b}_{v}\\\mathbf{b}_{c}\\\mathbf{b}_{p}\end{bmatrix}$$
Precondition steps
Step I: $\mathbf{x}_{c} = P_{F_{c}}^{-1}\mathbf{b}_{c}$
Step II: $\mathbf{x}_{v} = P_{F_{v}}^{-1}(R^{T}\mathbf{x}_{c} + \mathbf{b}_{v})$
Step III: $\mathbf{x}_{p} = P_{SC}^{-1}(G^{T}\mathbf{x}_{v} - \mathbf{b}_{p})$

Preconditioner for Scenario 2

$$\mathbf{F}_{DCE} = \begin{bmatrix} F_{v} & -R^{T} & G \\ 0 & F_{c} & 0 \\ G^{T} & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{P}_{DCE} = \begin{bmatrix} P_{F_{v}} & -R^{T} & 0 \\ 0 & P_{F_{c}} & 0 \\ G^{T} & 0 & -P_{SC} \end{bmatrix}$$

$$\mathbf{P}_{DCE}\begin{bmatrix}\mathbf{x}_{v}\\\mathbf{x}_{c}\\\mathbf{x}_{p}\end{bmatrix} = \begin{bmatrix}\mathbf{b}_{v}\\\mathbf{b}_{c}\\\mathbf{b}_{p}\end{bmatrix}$$
Precondition steps
Step I: $\mathbf{x}_{c} = P_{F_{c}}^{-1}\mathbf{b}_{c}$
Step II: $\mathbf{x}_{v} = P_{F_{v}}^{-1}(R^{T}\mathbf{x}_{c} + \mathbf{b}_{v})$
Step III: $\mathbf{x}_{p} = P_{SC}^{-1}(G^{T}\mathbf{x}_{v} - \mathbf{b}_{p})$
LSC: $P_{SC}^{-1} \approx M_{p}^{-1}F_{p}S_{p}^{-1}$

$$\mathbf{F}_{DCE} = \begin{bmatrix} F_{v} & -R^{T} & G \\ 0 & F_{c} & 0 \\ G^{T} & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{P}_{DCE} = \begin{bmatrix} P_{F_{v}} & -R^{T} & 0 \\ 0 & P_{F_{c}} & 0 \\ G^{T} & 0 & -P_{SC} \end{bmatrix}$$

$$P_{DCE}\begin{bmatrix}\mathbf{x}_{v}\\\mathbf{x}_{c}\\\mathbf{x}_{p}\end{bmatrix} = \begin{bmatrix}\mathbf{b}_{v}\\\mathbf{b}_{c}\\\mathbf{b}_{p}\end{bmatrix}$$
Precondition steps
Step I: $\mathbf{x}_{c} = P_{F_{c}}^{-1}\mathbf{b}_{c}$
Step II: $\mathbf{x}_{v} = P_{F_{v}}^{-1}(R^{T}\mathbf{x}_{c} + \mathbf{b}_{v})$
Step III: $\mathbf{x}_{p} = P_{SC}^{-1}(G^{T}\mathbf{x}_{v} - \mathbf{b}_{p})$
LSC: $P_{SC}^{-1} \approx M_{p}^{-1}F_{p}S_{p}^{-1}$

$$Implemented Solvers$$
• algebraic multigrid approximation
(Yvan Notay, AGMG software + documentation)

$$\mathbf{F}_{DCE} = \begin{bmatrix} F_{v} & -R^{T} & G \\ 0 & F_{c} & 0 \\ G^{T} & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{P}_{DCE} = \begin{bmatrix} P_{F_{v}} & -R^{T} & 0 \\ 0 & P_{F_{c}} & 0 \\ G^{T} & 0 & -P_{SC} \end{bmatrix}$$

$$\mathbf{P}_{DCE}\begin{bmatrix}\mathbf{x}_{v}\\\mathbf{x}_{c}\\\mathbf{x}_{p}\end{bmatrix} = \begin{bmatrix}\mathbf{b}_{v}\\\mathbf{b}_{c}\\\mathbf{b}_{p}\end{bmatrix}$$
Precondition steps
Step I: $\mathbf{x}_{c} = P_{F_{c}}^{-1}\mathbf{b}_{c}$
Step II: $\mathbf{x}_{v} = P_{F_{v}}^{-1}(R^{T}\mathbf{x}_{c} + \mathbf{b}_{v})$
Step III: $\mathbf{x}_{p} = P_{SC}^{-1}(G^{T}\mathbf{x}_{v} - \mathbf{b}_{p})$
LSC: $P_{SC}^{-1} \approx M_{p}^{-1}F_{p}S_{p}^{-1}$

$$\mathbf{P}_{SC} = \mathbf{P}_{SC}^{-1}(\mathbf{x}_{v} - \mathbf{b}_{p})$$
Figure 11: $\mathbf{x}_{p} = \mathbf{F}_{SC}^{-1}(G^{T}\mathbf{x}_{v} - \mathbf{b}_{p})$
Step III: $\mathbf{x}_{p} = P_{SC}^{-1}(G^{T}\mathbf{x}_{v} - \mathbf{b}_{p})$
Step III: $\mathbf{x}_{p} = P_{SC}^{-1}(G^{T}\mathbf{x}_{v} - \mathbf{b}_{p})$
Step III: $\mathbf{x}_{p} = \mathbf{F}_{SC}^{-1}(G^{T}\mathbf{x}_{v} - \mathbf{b}_{p})$

$$\mathbf{ESC}: P_{SC}^{-1} \approx M_{p}^{-1}F_{p}S_{p}^{-1}$$

Iterative Solver for Saddle Point Systems ○○○● Conclusion 00

11/13

Iterative Solver for Saddle Point Systems

Numerical Examples – NSE

Iterative Solver for Saddle Point Systems ○○○● Conclusion 00

11/13

Iterative Solver for Saddle Point Systems

Numerical Examples – NSE

Iterative Solver for Saddle Point Systems ○○○● Conclusion 00

Iterative Solver for Saddle Point Systems Numerical Examples – NSE

11/13

Iterative Solver for Saddle Point Systems ○○○● Conclusion OO

Iterative Solver for Saddle Point Systems

Numerical Examples - NSE

Iterative Solver for Saddle Point Systems ○○○● Conclusion 00

Iterative Solver for Saddle Point Systems

Numerical Examples – NSE

Iterative Solver for Saddle Point Systems ○○○● Conclusion 00

Iterative Solver for Saddle Point Systems

Numerical Examples – NSE

Conclusion

Review

- Showed flow problems and coupled systems.
- Applied boundary feedback stabilization approach to DAE.
- Newton-ADI of projected system leads to nested iteration with SPS in the innermost loop.
- Investigated block-preconditioner depending on problem structure.

Conclusion

Review

- Showed flow problems and coupled systems.
- Applied boundary feedback stabilization approach to DAE.
- Newton-ADI of projected system leads to nested iteration with SPS in the innermost loop.
- Investigated block-preconditioner depending on problem structure.

Outlook

- Improve *multigrid* solver for complex ADI shifts q_i.
- Improve Krylov solver via the use of recycling or block techniques.
- Investigated the relations inside the threefold nested iteration. (3 stopping parameters, ADI shifts, parameters: Re, Sc, Pr)

Conclusion

Review

- Newton-ADI of projected system leads to be at iteration with SP in the innermost loop.
 Investigated block-preconditioner NOUL ation with SPS
- hanks for

Outlook

- Improve for complex ADI shifts q_i.
 - solver via the use of recycling or block techniques. the relations inside the threefold nested iteration. opping parameters, ADI shifts, parameters: Re, Sc, Pr)

Appendix

Scenario 1: NSE on "von Kármán Vortex Street"

PDE: NSE
Goal:
$$\vec{z} = \vec{v} - \vec{w} \to 0$$

 \Rightarrow Linearized Navier-Stokes equations:
 $\frac{\partial \vec{z}}{\partial t} - \frac{1}{\text{Re}}\Delta \vec{z} + (\vec{z} \cdot \nabla)\vec{w} + (\vec{w} \cdot \nabla)\vec{z} + \nabla p = 0$
 $\text{div } \vec{z} = 0$
defined on $(0, \infty) \times \Omega$
 $+$ boundary and initial conditions
LQR
Minimize
 $\mathcal{J}(\mathbf{y}, \mathbf{u}) = \frac{1}{2} \int_{0}^{\infty} \lambda ||\mathbf{y}||^{2} + ||\mathbf{u}||^{2} \text{ dt}$
s.t.
 $\begin{bmatrix} M_{z} & 0 \\ 0 & 0 \end{bmatrix} \frac{d}{dt} \begin{bmatrix} \mathbf{z} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} A_{z} & G \\ G^{T} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{z} \\ \mathbf{p} \end{bmatrix} + \begin{bmatrix} B_{z} \\ 0 \end{bmatrix} \mathbf{u}$
 $\mathbf{y}(t) = C_{z}\mathbf{z}(t)$

10/13

Appendix

Scenario 1: NSE on "von Kármán Vortex Street"

Appendix

Scenario 2: NSE Coupled with DCE in Reactor Model

PDE: NSE+DCE Goal: $\vec{z} = \vec{v} - \vec{w} \rightarrow 0, c = c^{(\vec{v})} - c^{(\vec{w})} \rightarrow 0$ \Rightarrow Linearized coupled system: $\frac{\partial \vec{z}}{\partial t} - \frac{1}{\text{Re}}\Delta \vec{z} + (\vec{z} \cdot \nabla)\vec{w} + (\vec{w} \cdot \nabla)\vec{z} + \nabla p = 0$ $\frac{\partial c}{\partial t} - \frac{1}{\text{Re}} \Delta c + (\vec{w} \cdot \nabla)c + (\vec{z} \cdot \nabla)c^{(\vec{w})} = 0$ $\text{div } \vec{z} = 0$ defined on $(0, \infty) \times \Omega$ plus BC,IC

Minimize

$$\mathcal{J}(\mathbf{y}, \mathbf{u}) = \frac{1}{2} \int_0^\infty \lambda ||\mathbf{y}||^2 + ||\mathbf{u}||^2 dt$$
s.t.

$$\begin{bmatrix} M_z & 0 & 0 \\ 0 & M_c & 0 \\ 0 & 0 & 0 \end{bmatrix} \frac{d}{dt} \begin{bmatrix} \mathbf{z} \\ \mathbf{c} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} A_z & 0 & G \\ R & A_c & 0 \\ G^T & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{z} \\ \mathbf{c} \\ \mathbf{p} \end{bmatrix} + \begin{bmatrix} B_z \\ 0 \\ 0 \end{bmatrix} \mathbf{u}$$

$$\mathbf{y}(t) = C_c \mathbf{c}$$

Appendix

Scenario 2: NSE Coupled with DCE DCE actor Model

Minimize

$$\mathcal{J}(\mathbf{y}, \mathbf{u}) = \frac{1}{2} \int_0^\infty \lambda ||\mathbf{y}||^2 + ||\mathbf{u}||^2 dt$$
s.t.

$$\begin{bmatrix} M_z & 0 & 0 \\ 0 & M_c & 0 \\ 0 & 0 & 0 \end{bmatrix} \frac{d}{dt} \begin{bmatrix} \mathbf{z} \\ \mathbf{c} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} A_z & 0 & G \\ R & A_c & 0 \\ G^T & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{z} \\ \mathbf{c} \\ \mathbf{p} \end{bmatrix} + \begin{bmatrix} B_z \\ 0 \\ 0 \end{bmatrix} \mathbf{u}$$

$$\mathbf{y}(t) = C_c \mathbf{c}$$

Appendix

Scenario 2: NSE Coupled with DCE in Reactor Model

Minimize $\mathcal{J}(\mathbf{y}, \mathbf{u}) = \frac{1}{2} \int_0^\infty \lambda ||\mathbf{y}||^2 + ||\mathbf{u}||^2 dt$ s.t. $\mathcal{M}\frac{d}{dt} \begin{bmatrix} \tilde{\mathbf{z}} \\ \mathbf{c} \end{bmatrix} = \mathcal{A} \begin{bmatrix} \tilde{\mathbf{z}} \\ \mathbf{c} \end{bmatrix} + \begin{bmatrix} \mathcal{B} \\ \mathbf{0} \end{bmatrix} \mathbf{u}$ $\mathbf{y}(t) = C_c \mathbf{c}$ [HEINGENSCHLOSS/SORENSEN/SUN '08]

Iterative Solver for Saddle Point System: 0000

Ø

Appendix Newton-ADI: NSE on von Kármán Vortex Street

Iterative Solver for Saddle Point System: 0000

Appendix

Newton-ADI: NSE on von Kármán Vortex Street

Iterative Solver for Saddle Point Systems

Appendix

