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defined on (0, 00) x Q, Q C R? bounded and "smooth enough” T = 9Q

@ + boundary and initial conditions

Max Planck Institute Magdeburg

models describe incompressible, instationary flow
viscosity v € R*, (NSE: Reynolds number Re = % ¢ R*)
initial boundary value problem with additional algebraic constraints
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Origin of Saddle Point Systems

e Point Systems

Motivation
Model Problems
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Diffusion-Convection Models

Concentration Equation
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Temperature Equation
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@ + boundary and initial conditions

@ defined on (0,00) x Q, Q C R? bounded and "smooth enough” T = 9Q

@ models describe diffusion and convection process
o Schmidt number Sc € R*, Prandtl number Pr € R*
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o Scenario 1: Feedback stabilization of flow field around
stationary trajectory in "von Karman Vortex Street”.
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o Scenario 2: Feedback stabilization of coupled flow and
diffusion-convection field in a reactor model.
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Basic Ideas of Feedback Stabilization

o Motivation:

— Stabilize flow profiles.
— Attenuate external perturbations.
< Influence flow via boundary conditions.
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o Motivation:
— Stabilize flow profiles.
— Attenuate external perturbations.
< Influence flow via boundary conditions.

@ Riccati-based feedback stabilization with boundary control input.
— Use linear quadratic regulator (LQR) approach.
— Influence the model via boundary control.
— Stabilize the flow around a desired flow profile (stationary trajectory)
that is used as linearization point.
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@ Riccati-based feedback stabilization with boundary control input.

— Use linear quadratic regulator (LQR) approach.
— Influence the model via boundary control.
— Stabilize the flow around a desired flow profile (stationary trajectory)

that is used as linearization point.

@ Analytical approach by [RaymonD since 2005].
— Uses Leray projector to project onto the correct subspace.
— Extended to finite dimensional controllers [RaymMOND/THEVENET '10].
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Motivation

Basic Ideas of Feedback Stabilization

o Motivation:

— Stabilize flow profiles.
— Attenuate external perturbations.
< Influence flow via boundary conditions.

@ Riccati-based feedback stabilization with boundary control input.

— Use linear quadratic regulator (LQR) approach.
— Influence the model via boundary control.
— Stabilize the flow around a desired flow profile (stationary trajectory)

that is used as linearization point.

@ Analytical approach by [RaymonD since 2005].
— Uses Leray projector to project onto the correct subspace.
— Extended to finite dimensional controllers [RaymMOND/THEVENET '10].

o lIdeas for numerical treatment based on [Binscu/BENNER ’10].
< Consider linearized Navier-Stokes equations for 2D.
— Discrete projection idea by [HEINKENSCHLOSS/SORENSEN/SUN ’08].
— Use Newton-ADI method to compute optimal control.
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Origin of Saddle Point Systems

Finite Element Discretization

o Applying a standard finite element discretization to the linearized
flow/coupled flow problems yields

M%x(t) — Ax(t) + Gp(t) + (1),
0= GTv(t).

Scenario 1 Scenario 2
x(t) = v(t)  x(t) = {‘c’g]
A=A, A= [ f‘;? ;\)
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Origin of Saddle Point Systems

Finite Element Discretization

o Applying a standard finite element discretization to the linearized

flow/coupled flow problems yields

d
Max(t) = Ax(t) + Gp(t)|+ Bu(t),

0=GTv(t),
y(t) = Cx(1).
Properties
o Differential algebraic system (DAE) of D-index 2 (if G has full rank).
= bz pemels Scenario 1 Scenario 2
A& [M 0 s =u(e)  x0) = [1]
GT o]’|0 o) A, 0
A=A, A=|Tn
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Finite Element Discretization

o Applying a standard finite element discretization to the linearized
flow/coupled flow problems yields

M%x(t) = Ax(t) + Gp(t) + Bu(t),
0=GTv(t),
y(t) = Cx(1).

o Differential algebraic system (DAE) of D-index 2 (if G has full rank).

@ Matrix pencil:
A Gl [M o0
G" o]0 o]/

@ Descriptor system with multiple inputs and outputs (MIMO).
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Finite Element Discretization

o Applying a standard finite element discretization to the linearized
flow/coupled flow problems yields

d
Max(t) = Ax(t) + Gp(t) + Bu(t),

0=GTv(t),
y(t) = Cx(t).

o Differential algebraic system (DAE) of D-index 2 (if G has full rank).

@ Matrix pencil:
A Gl [M o0
G" o]0 o]/

@ Descriptor system with multiple inputs and outputs (MIMO).

@ Index reduction to apply LQR approach [HEINKENSCHLOSS/SORENSEN/SUN '08].
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LQR Approach for Projected System [BENNER/SAAK/STOLL/W. 12]

Minimize

1 > 2 2
)= [ Myl + ol

subject to
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Origin of Saddle Point Systems (G

LQR Approach for Projected System [BENNER/SAAK/STOLL/W.
Minimize
1 > 2 2
Tlywy=3 [ IR+l dt
0
subject to

Riccati Based Feedback Approach [e.g.,LOCATELLI "01]

o Optimal control: u(t) = —KX(t).
o Feedback: K = BT XM,
where X is the solution of the generalized algebraic Riccati equation

R(X)=CTC+ A" XM+ MTXA—- MTXBB"XM = 0.
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Origin of Saddle Point Systems

Nested Iteration

Compute feedback matrix K = BT XM with X solves:
RX)=CTCH+ AT XM+ MTXA—~ MTXBB"XM =0

Newton Kleinman method
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Origin of Saddle Point Systems

Nested Iteration

Compute feedback matrix K = BT XM with X solves:
R(X)=CTC+ATXM+MTXA—~ MTXBB"XM =0

Step m + 1: solve Lyapunov equation
(.A _ BIC(m))TX(m+1)M + MTX(m+1)(A _ B’C(m)) _ _(W(m))TW(m)

Newton Kleinman method
low rank ADI method
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Orugm of Saddle Point Systems

Nested Iteration

Compute feedback matrix K = BT XM with X solves:
RX)=CTCH+ AT XM+ MTXA—~ MTXBB"XM =0

Step m + 1: solve Lyapunov equation
(A = BT XM DA 4 MT XD (A — B = —(w(m) Tp(m)

Step i: solve the projected linear system

(A=BK™ + g M)TVi=Y (2

Newton Kleinman method
low rank ADI method

Krylov solver
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Origin of Saddle Point Systems

Nested Iteration

Compute feedback matrix K = BT XM with X solves:
RX)=CTCH+ AT XM+ MTXA—~ MTXBB"XM =0

Step m + 1: solve Lyapunov equation

(.A _ BIC(m))TX(m+1)M + MTX(m+1)(A _ B’C(m)) _ _(W(m))TW(m)
Step i: solve the projected linear system
(A=-BKM +qM)TVi=Y  (2)

Avoid explicit projection using [HEINKENSCHLOSS/SORENSEN/SUN '08]:

Newton Kleinman method
low rank ADI method

Krylov solver
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Origin of Saddle Point Systems

Nested Iteration

Compute feedback matrix K = BT XM with X solves:
RX)=CTCH+ AT XM+ MTXA—~ MTXBB"XM =0

Step m + 1: solve Lyapunov equation
(.A _ BIC(m))TX(m+1)M + MTX(m+1)(A _ B’C(m)) _ _(W(m))TW(m)

Step i: solve the projected linear system
(A—=BKM £ g M)TVi=Y  (2)

Avoid explicit projection using [HEINKENSCHLOSS/SORENSEN/SUN '08]:
Replace (2) and solve instead the saddle point system (SPS)

AT —(K(MTBT  gMT G] [Vi] _[Y
GT 0] | * 0
for different ADI shifts g; € C~ for a couple of rhs Y.
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Nested Iteration

Compute feedback matrix K = BT XM with X solves:
RX)=CTCH+ AT XM+ MTXA—~ MTXBB"XM =0

Step m + 1: solve Lyapunov equation
(.A _ BIC(m))TX(m+1)M + MTX(m+1)(A _ B’C(m)) _ _(W(m))TW(m)

Step i: solve the projected linear system
(A—BK™ M)V, =Y (2)
Avoid explicit projection using [HEINKENSCHLOSS/SORENSEN/SUN '08]:

Replace (2) and solve instead the saddle point system (SPS)
(using Sherman Morrison Woodbury formula)
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(using Sherman Morrison Woodbury formula)
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Iterative Solver for Saddle Point Systems

Block-Preconditioner

Preconditioned GMRES [ELMAN/SILVESTER/ WATHEN ’05]

o Use iterative methods because size becomes quite large.
@ Using GMRES for non-symmetric SPS and a block-preconditioner P.
o Ideas for NSE can be adapted to coupled flow problems.

E_ [ATaMT G
B GT 0
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Block-Preconditioner

Preconditioned GMRES [ELMAN/SILVESTER/ WATHEN ’05]

o Use iterative methods because size becomes quite large.
@ Using GMRES for non-symmetric SPS and a block-preconditioner P.
o Ideas for NSE can be adapted to coupled flow problems.
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Preconditioned GMRES [ELMAN/SILVESTER/ WATHEN ’05]

o Use iterative methods because size becomes quite large.
@ Using GMRES for non-symmetric SPS and a block-preconditioner P.
o Ideas for NSE can be adapted to coupled flow problems.
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Iterative Solver for Saddle Point Systems

Block-Preconditioner

Preconditioned GMRES [ELMAN/SILVESTER/ WATHEN ’05]

o Use iterative methods because size becomes quite large.
@ Using GMRES for non-symmetric SPS and a block-preconditioner P.
o Ideas for NSE can be adapted to coupled flow problems.

[F & _[PF 0
S

o Using algebraic multigrid approximation of F for Pr.
(Yvan Notay, AGMG software, documentation; http://homepages.ulb.ac.be/~ynotay/AGMG)
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Iterative Solver for Saddle Point Systems

Block-Preconditioner

Preconditioned GMRES [ELMAN/SILVESTER/ WATHEN ’05]
o Use iterative methods because size becomes quite large.
@ Using GMRES for non-symmetric SPS and a block-preconditioner P.
o Ideas for NSE can be adapted to coupled flow problems.

[F G [P0
S

o Using algebraic multigrid approximation of F for Pr.
(Yvan Notay, AGMG software, documentation; http://homepages.ulb.ac.be/~ynotay/AGMG)

o Using least-squares commutator (LSC) approach for Schur
complement approximation Psc. [STOLL/WATHEN ’11]

Max Planck Institute Magdeburg ichel pi deburg.mpg.de, Pr ditioned Large-Scale Saddle Point Systems for Coupled Flows 8/13



http://homepages.ulb.ac.be/~ynotay/AGMG

Iterative Solver for Saddle Point Systems
(]

Iterative Solver for Saddle Point Systems

Block-Preconditioner

Preconditioned GMRES [ELMAN/SILVESTER/ WATHEN ’05]

o Use iterative methods because size becomes quite large.

@ Using GMRES for non-symmetric SPS and a block-preconditioner P.
o Ideas for NSE can be adapted to coupled flow problems.

_ AT+C],'MT G _ Pe 0
F_[ GT 0 - P= GT —Psc

o Using algebraic multigrid approximation of F for Pr.
(Yvan Notay, AGMG software, documentation; http://homepages.ulb.ac.be/~ynotay/AGMG)

o Using least-squares commutator (LSC) approach for Schur
complement approximation Psc. [STOLL/WATHEN ’11]

o Problems: - Preconditioner changes in every ADI step,
- SPS has to be solved for a number of right hand sides.
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Iterative Solver for Saddle Point Systems
NSE

Preconditioner for Scenario 1

AZ- o q,-Mf G
Frnse = cT 0
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Iterative Solver for Saddle Point Systems
NSE

Preconditioner for Scenario 1

G

F, Pr, 0
FNSE:|:GT O] = PNSE:|:GEf —Psc]
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Point Systems

Iterative Solver for Saddle
NSE

Preconditioner for Scenario 1

To apply preconditioner P psg solve:

v b,
P o] = 1)
p
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Motivation

NSE

Step I:
Step II:

Preconditioner for Scenario 1

Iterative Solver for Saddle

Iterative Solver for Saddle Point Systems

Point Systems

o
—Psc

Precondition steps

=il
xy = Pg by

Ty = chl (GTxv =

Pnse

b,)
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NSE

Preconditioner for Scenario 1

Motivation Origin of Saddle Point System:

Iterative Solver for Saddle

Iterative Solver for Saddle Point Systems

Point Systems

o
—Psc

Precondition steps

Pnse

Step I Sy = P,_Tvlbv
Step Il:  x, =Pl (Gx, —b,)
LSC:  Pgd ~ M, 'F,S, !
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NSE

F.
Frnse = [GT

Motivation Origin of Saddle Point Systems

Iterative Solver for Saddle Point Systems

Preconditioner for Scenario 1

o

Iterative Solver for Saddle Point Systems

P 0
= I:)NSE = |:GEIV' _PSC:|

To apply preconditioner P psg solve:

I \"4 bV
Pnse ib} = [b }
L P

Precondition steps

Implemented Solvers

Step I: X, = pF—lbv e algebraic multigrid approximation
:1 T (Yvan Notay, AGMG software +
Step II: xp = Psc (G'xy —bp) documentation)
. -1 ap-1 1
LSC: P3¢ ~ M, 'F,S, ]
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Iterative Solver for Saddle Point Systems
NSE

Preconditioner for Scenario 1

I \"4 bV
Pnse ib} = [b }
L P

Precondition steps

Implemented Solvers

Step I: X, = pF—lbv e algebraic multigrid approximation
:1 T (Yvan Notay, AGMG software +
Stepll:  x, =Pg- (G x, —bp)

documentation)
LSC:  Pgd ~ M, 'F,S; !

e Chebyshev semi-iteration
[SToLL/WATHEN ’11]
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Iterative Solver for Saddle Point Systems
NSE+DCE

Preconditioner for Scenario 2

AT +gM, —RT G
Fpce = 0 Al +qiM. 0
GT 0 0
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Iterative Solver for Saddle Point Systems
NSE+DCE

Preconditioner for Scenario 2

F, —-RT G
Fpce=| 0 F. 0
GT 0 0
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Iterative Solver for Saddle Point Systems
NSE+DCE

Preconditioner for Scenario 2

F, —-RT G P, —RT 0
Fpce=| 0 Fe 0| = Ppce=| 0 PF, 0
GT 0 0 GT 0 —Psc
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Iterative Solver for Saddle Point Systems
NSE+DCE

Preconditioner for Scenario 2

F, —RT G Pr, —RT 0
FDCE = 0 FC 0 = PDCE = 0 PFC 0
GT 0 0 GT 0 —Psc

To apply preconditioner Ppce solve:

Xy b,
Ppce |xc| = |bc
Xp b,
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Iterative Solver for Saddle Point Systems
NSE+DCE

Preconditioner for Scenario 2

F, —RT G Pr, —RT 0
FDCE = 0 Fc 0 = PDCE = 0 PFC 0
GT 0 0 GT 0 —Psc

To apply preconditioner Ppce solve:

Xy b,
Ppce |xc| = |bc
Xp b,

Precondition steps
Step I Xe = P,_Tclbc
StepIl:  x, = Pz'(R"xc +b,)

Step Il x, = P52 (G'x, — bp)
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To apply preconditioner Ppce solve:

Xy b,
Ppce |xc| = |bc
Xp b,

Precondition steps
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Iterative Solver for Saddle Point Systems
NSE+DCE

Preconditioner for Scenario 2

F, —RT G Pr, —RT 0
FDCE = 0 FC 0 = PDCE = 0 'DFC 0
GT 0 0 GT 0 —Psc

To apply preconditioner Ppce solve:

X, b,
Ppce |xc| = |bc
Xp b,

Precondition steps

Implemented Solvers
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Preconditioner for Scenario 2

F, —RT G Pr, —RT 0
FDCE = 0 FC 0 = PDCE = 0 'DFC 0
GT 0 0 GT 0 —Psc

To apply preconditioner Ppce solve:

Xy b,
Ppce |xc| = |bc
Xp b,

Precondition steps

Implemented Solvers

Step | Xc = P,_Tclbc e algebraic multigrid approximation
Step II: X, = PEI (RTXC +b,) (Yvan Nota)-/, AGMG software +
Vl - documentation)
Step lll:  x, = Psz (G'x, —by)

e Chebyshev semi-iteration
[SToLL/WATHEN ’11]
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Conclusion
o

Conclusion

@ Showed flow problems and coupled systems.

o Applied boundary feedback stabilization approach to DAE.

@ Newton-ADI of projected system leads to nested iteration with SPS
in the innermost loop.

o Investigated block-preconditioner depending on problem structure.
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@ Showed flow problems and coupled systems.

Applied boundary feedback stabilization approach to DAE.

@ Newton-ADI of projected system leads to nested iteration with SPS
in the innermost loop.

Investigated block-preconditioner depending on problem structure.

4

Improve multigrid solver for complex ADI shifts g;.

Improve Krylov solver via the use of recycling or block techniques.

Investigated the relations inside the threefold nested iteration.
(3 stopping parameters, ADI shifts, parameters: Re, Sc, Pr)
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in the innermost loop.

o Investigated block-precop#?|
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Appendix
Scenario 1: NSE on "von Karman Vortex Street”

nt Systems

y (ED
Goal: Z=v—-w —0 Minimize
~~ Linearized Navier-Stokes equations: Ty, u) = 1 /Oo )\||YH2 T ||u||2 dt
97 1 .. o 5 2,
1 RAIF(E V)W (W V)Z+Vp=0 5'7\'4 " W e .
divZ=0 i P L P z z
| o bl el [e
defined on (0, 00) x Q
|+ boundary and initial conditions 1 y(t) = C2(t)

Domain Q: von Kdarman vortex street
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Appendix
Scenario 2: NSE Coupled with DCE in Reactor Model
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Appendix

Newton-ADI: NSE on von Karman Vortex Street

100 —w— Re 100
—— Re 200
10-2 —o— Re 300
—o— Re 400
::u' 10—4 —»— Re 500
=
x[E —6 ]
fIg 10
E =
x| 1078 -1
10—10 |
10—12 |
| | | \ | | | |

1 2 3 4 5 6 7 8 9 10

Newton step m
Relative change of feedback matrix K for different Reynolds numbers
()\ = p=1, n= 5468, direct solver, tolym = 1072, tolap) = 107*%).
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Newton step m
Relative change of feedback matrix K for different Reynolds numbers
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Appendix

Newton-ADI: NSE Coupled with DCE in Reactor Model

K™ —Km =) |
[[K(m)|g

10-8

10—10

N I S N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Newton step m

Relative change of feedback matrix K for different output weightings A
(Re = Sc = 10, p = 1, n = 6515, direct solver, tolw = 107, tolapi = 107°).
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