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Motivation
Model Problems

defined on (0,∞)× Ω, Ω ⊂ R2 bounded and ”smooth enough” Γ = ∂Ω

+ boundary and initial conditions

∂~v

∂t
− ν∆~v +∇p = ~f

div~v = 0

Stokes Equations

∂~v

∂t
− 1

Re
∆~v + (~v · ∇)~v +∇p = ~f

div~v = 0

Navier-Stokes Equations

Flow Models

models describe incompressible, instationary flow

viscosity ν ∈ R+, (NSE: Reynolds number Re = vch·dch
ν
∈ R+)

initial boundary value problem with additional algebraic constraints
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Motivation
Model Problems

∂~v

∂t
− ν∆~v +∇p = ~f

div~v = 0

Stokes Equations

∂~v

∂t
− 1

Re
∆~v + (~v · ∇)~v +∇p = ~f

div~v = 0

Navier-Stokes Equations

Flow Models

∂c

∂t
− 1

Re Sc
∆c + (~v · ∇)c = 0

Concentration Equation

∂ϑ

∂t
− 1

Re Pr
∆ϑ+ (~v · ∇)ϑ = 0

Temperature Equation

defined on (0,∞)× Ω, Ω ⊂ R2 bounded and ”smooth enough” Γ = ∂Ω

+ boundary and initial conditions

Diffusion-Convection Models

models describe diffusion and convection process

Schmidt number Sc ∈ R+, Prandtl number Pr ∈ R+
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∂~v

∂t
− ν∆~v +∇p = ~f

div~v = 0

Stokes Equations

∂~v

∂t
− 1

Re
∆~v + (~v · ∇)~v +∇p = ~f

div~v = 0

Navier-Stokes Equations

Flow Models

∂c

∂t
− 1

Re Sc
∆c + (~v · ∇)c = 0

Concentration Equation

∂ϑ

∂t
− 1

Re Pr
∆ϑ+ (~v · ∇)ϑ = 0

Temperature Equation

Diffusion-Convection Models

Scenario 1: Feedback stabilization of flow field around
stationary trajectory in ”von Kármán Vortex Street”.
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Navier-Stokes Equations

Flow Models
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∂t
− 1

Re Sc
∆c + (~v · ∇)c = 0

Concentration Equation

∂ϑ

∂t
− 1

Re Pr
∆ϑ+ (~v · ∇)ϑ = 0

Temperature Equation

Diffusion-Convection Models

Scenario 2: Feedback stabilization of coupled flow and
diffusion-convection field in a reactor model.
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Motivation
Basic Ideas of Feedback Stabilization

Motivation:
↪→ Stabilize flow profiles.
↪→ Attenuate external perturbations.
↪→ Influence flow via boundary conditions.

Riccati-based feedback stabilization with boundary control input.
↪→ Use linear quadratic regulator (LQR) approach.
↪→ Influence the model via boundary control.
↪→ Stabilize the flow around a desired flow profile (stationary trajectory)

that is used as linearization point.

Analytical approach by [Raymond since 2005].
↪→ Uses Leray projector to project onto the correct subspace.
↪→ Extended to finite dimensional controllers [Raymond/Thevenet ’10].

Ideas for numerical treatment based on [Bänsch/Benner ’10].
↪→ Consider linearized Navier-Stokes equations for 2D.
↪→ Discrete projection idea by [Heinkenschloss/Sorensen/Sun ’08].
↪→ Use Newton-ADI method to compute optimal control.
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Origin of Saddle Point Systems
Finite Element Discretization

Applying a standard finite element discretization to the linearized
flow/coupled flow problems yields

M
d

dt
x(t) = Ax(t) + Gp(t) + f(t),

0 = GT v(t).

y(t) = Cx(t).

Properties

Differential algebraic system (DAE) of D-index 2 (if G̃ has full rank).

Matrix pencil: ([
A G̃

G̃ T 0

]
,

[
M 0
0 0

])
.

Descriptor system with multiple inputs and outputs (MIMO).

Index reduction to apply LQR approach [Heinkenschloss/Sorensen/Sun ’08].

Scenario 1 Scenario 2

x(t) = v(t) x(t) =

[
v(t)
c(t)

]
A = Av A =

[
Av 0
−R Ac

]

G̃ = G G̃ =

[
G
0

]
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Origin of Saddle Point Systems
LQR Approach for Projected System [Benner/Saak/Stoll/W. 12]

Minimize

J (y,u) =
1

2

∫ ∞
0

λ||y||2 + ||u||2 dt,

subject to

M d

dt
x̃(t) = Ax̃(t) + Bu(t),

y(t) = Cx̃(t).
(1)

Riccati Based Feedback Approach [e.g.,Locatelli ’01]

Optimal control: u(t) = −Kx̃(t).

Feedback: K = BTXM,

where X is the solution of the generalized algebraic Riccati equation

R(X ) = CTC +ATXM+MTXA−MTXBBTXM = 0.
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Origin of Saddle Point Systems
Nested Iteration

Compute feedback matrix K = BTXM with X solves:

R(X ) = CTC +ATXM+MTXA−MTXBBTXM = 0

Step m + 1: solve Lyapunov equation

(A− BK(m))TX (m+1)M+MTX (m+1)(A− BK(m)) = −(W(m))TW(m)

Step i: solve the projected linear system

(A− BK(m) + qiM)TVi = Y (2)

Avoid explicit projection using [Heinkenschloss/Sorensen/Sun ’08]:
Replace (2) and solve instead the saddle point system (SPS)

[
AT − (K (m))TBT + qiM

T G̃

G̃T 0

] [
Vi

∗

]
=

[
Y
0

]
for different ADI shifts qi ∈ C− for a couple of rhs Y .N

ew
to

n
K

le
in

m
a

n
m

et
h

o
d

lo
w

ra
n

k
A

D
I

m
et

h
o

d

K
ry

lo
v

so
lv

er
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Iterative Solver for Saddle Point Systems
Block-Preconditioner

Preconditioned GMRES [Elman/Silvester/Wathen ’05]

Use iterative methods because size becomes quite large.

Using GMRES for non-symmetric SPS and a block-preconditioner P.

Ideas for NSE can be adapted to coupled flow problems.

F =

[
AT + qiM

T G̃

G̃T 0

]

⇒ P =

[
PF 0

G̃T −PSC

]
Using algebraic multigrid approximation of F for PF .
(Yvan Notay, AGMG software, documentation; http://homepages.ulb.ac.be/~ynotay/AGMG)

Using least-squares commutator (LSC) approach for Schur
complement approximation PSC . [Stoll/Wathen ’11]

Problems: - Preconditioner changes in every ADI step,
- SPS has to be solved for a number of right hand sides.
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Iterative Solver for Saddle Point Systems
NSE

FNSE =

[
AT

v + qiM
T
v G

GT 0

]

⇒ PNSE =

[
PFv 0
GT −PSC

]

Preconditioner for Scenario 1

Step I: xv = P−1Fv
bv

Step II: xp = P−1SC (GT xv − bp)

LSC: P−1SC ≈ M−1p FpS
−1
p

Precondition steps

• algebraic multigrid approximation
(Yvan Notay, AGMG software +

documentation)

• Chebyshev semi-iteration
[Stoll/Wathen ’11]

Implemented Solvers

To apply preconditioner PNSE solve:

PNSE

[
xv

xb

]
=

[
bv

bp

]
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Iterative Solver for Saddle Point Systems
NSE+DCE

FDCE =

AT
v + qiMv −RT G

0 AT
c + qiMc 0

GT 0 0



⇒ PDCE =

PFv −RT 0
0 PFc 0
GT 0 −PSC



Preconditioner for Scenario 2

Step I: xc = P−1Fc
bc

Step II: xv = P−1Fv
(RT xc + bv )

Step III: xp = P−1SC (GT xv − bp)

LSC: P−1SC ≈ M−1p FpS
−1
p

Precondition steps

• algebraic multigrid approximation
(Yvan Notay, AGMG software +

documentation)

• Chebyshev semi-iteration
[Stoll/Wathen ’11]

Implemented Solvers

To apply preconditioner PDCE solve:

PDCE

xv

xc

xp

 =

bv

bc

bp



Max Planck Institute Magdeburg weichelt@mpi-magdeburg.mpg.de, Preconditioned Large-Scale Saddle Point Systems for Coupled Flows 10/13



Motivation Origin of Saddle Point Systems Iterative Solver for Saddle Point Systems Conclusion

Iterative Solver for Saddle Point Systems
NSE+DCE

FDCE =

 Fv −RT G
0 Fc 0
GT 0 0



⇒ PDCE =

PFv −RT 0
0 PFc 0
GT 0 −PSC



Preconditioner for Scenario 2

Step I: xc = P−1Fc
bc

Step II: xv = P−1Fv
(RT xc + bv )

Step III: xp = P−1SC (GT xv − bp)

LSC: P−1SC ≈ M−1p FpS
−1
p

Precondition steps

• algebraic multigrid approximation
(Yvan Notay, AGMG software +

documentation)

• Chebyshev semi-iteration
[Stoll/Wathen ’11]

Implemented Solvers

To apply preconditioner PDCE solve:

PDCE

xv

xc

xp

 =

bv

bc

bp



Max Planck Institute Magdeburg weichelt@mpi-magdeburg.mpg.de, Preconditioned Large-Scale Saddle Point Systems for Coupled Flows 10/13



Motivation Origin of Saddle Point Systems Iterative Solver for Saddle Point Systems Conclusion

Iterative Solver for Saddle Point Systems
NSE+DCE

FDCE =

 Fv −RT G
0 Fc 0
GT 0 0

 ⇒ PDCE =

PFv −RT 0
0 PFc 0
GT 0 −PSC


Preconditioner for Scenario 2

Step I: xc = P−1Fc
bc

Step II: xv = P−1Fv
(RT xc + bv )

Step III: xp = P−1SC (GT xv − bp)

LSC: P−1SC ≈ M−1p FpS
−1
p

Precondition steps

• algebraic multigrid approximation
(Yvan Notay, AGMG software +

documentation)

• Chebyshev semi-iteration
[Stoll/Wathen ’11]

Implemented Solvers

To apply preconditioner PDCE solve:

PDCE

xv

xc

xp

 =

bv

bc

bp



Max Planck Institute Magdeburg weichelt@mpi-magdeburg.mpg.de, Preconditioned Large-Scale Saddle Point Systems for Coupled Flows 10/13



Motivation Origin of Saddle Point Systems Iterative Solver for Saddle Point Systems Conclusion

Iterative Solver for Saddle Point Systems
NSE+DCE

FDCE =

 Fv −RT G
0 Fc 0
GT 0 0

 ⇒ PDCE =

PFv −RT 0
0 PFc 0
GT 0 −PSC


Preconditioner for Scenario 2

Step I: xc = P−1Fc
bc

Step II: xv = P−1Fv
(RT xc + bv )

Step III: xp = P−1SC (GT xv − bp)

LSC: P−1SC ≈ M−1p FpS
−1
p

Precondition steps

• algebraic multigrid approximation
(Yvan Notay, AGMG software +

documentation)

• Chebyshev semi-iteration
[Stoll/Wathen ’11]

Implemented Solvers

To apply preconditioner PDCE solve:

PDCE

xv

xc

xp

 =

bv

bc

bp



Max Planck Institute Magdeburg weichelt@mpi-magdeburg.mpg.de, Preconditioned Large-Scale Saddle Point Systems for Coupled Flows 10/13



Motivation Origin of Saddle Point Systems Iterative Solver for Saddle Point Systems Conclusion

Iterative Solver for Saddle Point Systems
NSE+DCE

FDCE =

 Fv −RT G
0 Fc 0
GT 0 0

 ⇒ PDCE =

PFv −RT 0
0 PFc 0
GT 0 −PSC


Preconditioner for Scenario 2

Step I: xc = P−1Fc
bc

Step II: xv = P−1Fv
(RT xc + bv )

Step III: xp = P−1SC (GT xv − bp)

LSC: P−1SC ≈ M−1p FpS
−1
p

Precondition steps

• algebraic multigrid approximation
(Yvan Notay, AGMG software +

documentation)

• Chebyshev semi-iteration
[Stoll/Wathen ’11]

Implemented Solvers

To apply preconditioner PDCE solve:

PDCE

xv

xc

xp

 =

bv

bc

bp



Max Planck Institute Magdeburg weichelt@mpi-magdeburg.mpg.de, Preconditioned Large-Scale Saddle Point Systems for Coupled Flows 10/13



Motivation Origin of Saddle Point Systems Iterative Solver for Saddle Point Systems Conclusion

Iterative Solver for Saddle Point Systems
NSE+DCE

FDCE =

 Fv −RT G
0 Fc 0
GT 0 0

 ⇒ PDCE =

PFv −RT 0
0 PFc 0
GT 0 −PSC


Preconditioner for Scenario 2

Step I: xc = P−1Fc
bc

Step II: xv = P−1Fv
(RT xc + bv )

Step III: xp = P−1SC (GT xv − bp)

LSC: P−1SC ≈ M−1p FpS
−1
p

Precondition steps

• algebraic multigrid approximation
(Yvan Notay, AGMG software +

documentation)

• Chebyshev semi-iteration
[Stoll/Wathen ’11]

Implemented Solvers

To apply preconditioner PDCE solve:

PDCE

xv

xc

xp

 =

bv

bc

bp



Max Planck Institute Magdeburg weichelt@mpi-magdeburg.mpg.de, Preconditioned Large-Scale Saddle Point Systems for Coupled Flows 10/13



Motivation Origin of Saddle Point Systems Iterative Solver for Saddle Point Systems Conclusion

Iterative Solver for Saddle Point Systems
NSE+DCE

FDCE =

 Fv −RT G
0 Fc 0
GT 0 0

 ⇒ PDCE =

PFv −RT 0
0 PFc 0
GT 0 −PSC


Preconditioner for Scenario 2

Step I: xc = P−1Fc
bc

Step II: xv = P−1Fv
(RT xc + bv )

Step III: xp = P−1SC (GT xv − bp)

LSC: P−1SC ≈ M−1p FpS
−1
p

Precondition steps

• algebraic multigrid approximation
(Yvan Notay, AGMG software +

documentation)

• Chebyshev semi-iteration
[Stoll/Wathen ’11]

Implemented Solvers

To apply preconditioner PDCE solve:

PDCE

xv

xc

xp

 =

bv

bc

bp



Max Planck Institute Magdeburg weichelt@mpi-magdeburg.mpg.de, Preconditioned Large-Scale Saddle Point Systems for Coupled Flows 10/13



Motivation Origin of Saddle Point Systems Iterative Solver for Saddle Point Systems Conclusion

Iterative Solver for Saddle Point Systems
NSE+DCE

FDCE =

 Fv −RT G
0 Fc 0
GT 0 0

 ⇒ PDCE =

PFv −RT 0
0 PFc 0
GT 0 −PSC


Preconditioner for Scenario 2

Step I: xc = P−1Fc
bc

Step II: xv = P−1Fv
(RT xc + bv )

Step III: xp = P−1SC (GT xv − bp)

LSC: P−1SC ≈ M−1p FpS
−1
p

Precondition steps

• algebraic multigrid approximation
(Yvan Notay, AGMG software +

documentation)

• Chebyshev semi-iteration
[Stoll/Wathen ’11]

Implemented Solvers

To apply preconditioner PDCE solve:

PDCE

xv

xc

xp

 =

bv

bc

bp



Max Planck Institute Magdeburg weichelt@mpi-magdeburg.mpg.de, Preconditioned Large-Scale Saddle Point Systems for Coupled Flows 10/13



Motivation Origin of Saddle Point Systems Iterative Solver for Saddle Point Systems Conclusion

Iterative Solver for Saddle Point Systems
Numerical Examples – NSE
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Conclusion

Review
Showed flow problems and coupled systems.

Applied boundary feedback stabilization approach to DAE.

Newton-ADI of projected system leads to nested iteration with SPS
in the innermost loop.

Investigated block-preconditioner depending on problem structure.

Outlook
Improve multigrid solver for complex ADI shifts qi .

Improve Krylov solver via the use of recycling or block techniques.

Investigated the relations inside the threefold nested iteration.
(3 stopping parameters, ADI shifts, parameters: Re,Sc,Pr)
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Appendix
Scenario 1: NSE on ”von Kármán Vortex Street”

Goal: ~z = ~v − ~w → 0
 Linearized Navier-Stokes equations:

∂~z

∂t
− 1

Re
∆~z + (~z · ∇)~w + (~w · ∇)~z +∇p = 0

div~z = 0

defined on (0,∞)× Ω
+ boundary and initial conditions

PDE: NSE

NSE

stationary NSE

Minimize

J (y, u) =
1

2

∫ ∞
0

λ||y||2 + ||u||2 dt

s.t.[
Mz 0
0 0

]
d

dt

[
z
p

]
=

[
Az G
G T 0

][
z
p

]
+

[
Bz

0

]
u

y(t) = Cz z(t)

LQR

[Heinkenschloss/Sorensen/Sun ’08]

Domain Ω: von Kármán vortex street
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Appendix
Scenario 2: NSE Coupled with DCE in Reactor Model

Goal: ~z = ~v − ~w → 0, c = c (~v) − c (~w) → 0
 Linearized coupled system:

∂~z

∂t
− 1

Re
∆~z + (~z · ∇)~w + (~w · ∇)~z +∇p = 0

∂c

∂t
− 1

Re Sc
∆c + (~w · ∇)c + (~z · ∇)c (~w) = 0

div~z = 0
defined on (0,∞)× Ω plus BC,IC

PDE: NSE+DCE

Minimize

J (y, u) =
1

2

∫ ∞
0

λ||y||2 + ||u||2 dt

s.t.Mz 0 0
0 Mc 0
0 0 0

 d

dt

z
c
p

 =

Az 0 G
R Ac 0

G T 0 0

z
c
p

+

Bz

0
0

 u

y(t) = Cc c

LQR

[Heinkenschloss/Sorensen/Sun ’08]

Domain Ω: Reactor Model

DCE

stationary DCE
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Appendix
Newton-ADI: NSE on von Kármán Vortex Street
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Appendix
Newton-ADI: NSE Coupled with DCE in Reactor Model
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